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Abstract

Estimating the potential impacts of climate change requires understanding the ability of
agents to adapt to changes in their climate. This paper uses panel data from India spanning
from 1956 to 1999 to investigate the ability of farmers to adapt. To identify adaptation, I
exploit persistent, multidecadal monsoon regimes, during which droughts or floods are more
common. These regimes generate medium-run variation in average rainfall, and there is spa-
tial variation in the timing of the regimes. Using a fixed effects strategy, I test whether farmers
have adapted to the medium-run rainfall variation induced by the monsoon regimes. I find
evidence that farmers adjust their irrigation investments and their crop portfolios in response
to the medium-run rainfall variation. However, adaptation only recovers a small fraction of the
profits farmers have lost due to adverse climate variation.

1 Introduction

Climate scientists broadly agree that the global climate is changing and that these changes will ac-

celerate in coming decades (Christensen and Hewitson, 2007). However, estimates of the economic
⇤Smith College, Department of Economics, Pierce Hall, 21 West Street, Northampton, MA 01063-6317 (Email:

vtaraz@smith.edu). I would like to thank Christopher Udry, Mark Rosenzweig, Dean Karlan and Mushfiq Mobarak
for their guidance and support. I thank Victoria Beckley for assistance in creating maps. I thank Juan Pablo Rud for
sharing data. I thank Sophie D’Arcy and Emily Zhou for excellent research assistance. David Atkin, Reena Badiani,
David Childers, Simon Halliday, Rachel Heath, Richard Hornbeck, Namrata Kala, Dan Keniston, Melanie Morten,
Elizabeth Savoca, Susan Sayre and participants of the Yale Development Lunch, the NEUDC 2012, and the Southern
Economic Association Conference 2013 provided helpful comments and suggestions. All remaining errors are my
own.

1



impacts of climate change vary widely, in large part due to uncertainty about adaptation (Mendel-

sohn et al., 1994; Adams et al., 1998; Schlenker et al., 2005; Deschênes et al., 2007; Schlenker and

Roberts, 2009; Tol, 2014). Rapid adaptation may curb economic damages, but slower adaptation

will likely magnify them. Understanding adaptation is particularly crucial in developing countries

and in the agricultural sector, as both are especially vulnerable to climate change (Parry, 2007).

Recent scholarship has typically estimated climate change damages using year-to-year weather

variation to compare economic outcomes under hotter versus cooler temperatures. This climate–

economy relationship is then extrapolated to future climate change to estimate impacts (Deschênes

et al., 2007; Schlenker and Roberts, 2009; Guiteras, 2009; Dell et al., 2012; Burgess et al., 2014).1

Since these calculations rely on annual weather variability, they do not account for possible adap-

tations that agents may undertake in response to sustained climate change. Therefore, to assess the

accuracy of these estimates, it is vital to predict the likely extent of future adaptation.

In this paper, I exploit historical rainfall variation in India to estimate adaptation. Rather than

analyzing year-to-year weather deviations, I focus on climate fluctuations that last several decades.

The Indian monsoon undergoes multidecadal phases during which droughts or floods are more

common. These monsoon phases induce persistent deviations in rainfall from decade to decade.

I test whether farmers adapt their irrigation investments and crop portfolios in response to these

persistent rainfall deviations.2

Figure 1 shows a moving average of India’s summer rainfall, highlighting the monsoon phases.

These phases induce persistent rainfall deviations and, hence, lagged rainfall provides information

about future rainfall. Therefore, forward-looking farmers should adjust their agricultural decisions

in response to recent weather.

I test for adaptation by analyzing whether agricultural decisions respond to lagged weather,

looking specifically at irrigation investments and crop choice. I exploit the fact that the return to

irrigation investment varies across wet versus dry growing seasons and that, similarly, the relative
1Another methodology uses cross-sectional climate variation to link climate and the economy, but this work suffers

from potential omitted variable bias (Mendelsohn et al., 1994; Schlenker et al., 2005; Sanghi and Mendelsohn, 2008).
2The monsoon regimes don’t cause variation in temperature, so I do not analyze adaptation to temperature changes.
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yields of different crops vary across wet versus dry growing seasons. My empirical strategy is

to regress irrigation assets and crop portfolios on rainfall from the past decade, while controlling

for current rainfall, wealth, household fixed effects, and year fixed effects. Regional variation in

the timing of the decadal rainfall regimes, displayed in Figure 2, allows me to include year fixed

effects in my regressions and, hence, I can separate adaptation to rainfall from unrelated temporal

changes in irrigation and crop choice.

Analyzing two agricultural data sets, I find evidence of both irrigation adaptation and crop

adaptation. Each additional dry year in the past decade increases the probability that a farmer will

invest in irrigation by 1.2 percentage points, relative to a baseline 5% probability of investing.3

Each additional dry year in the past decade reduces the average daily water need of a farmer’s

monsoon season crop portfolio by 0.2 mm/day, relative to an average water need of 8 mm/day.4

In addition to testing for the presence of adaptation, I also measure the extent to which adaptation

prevents profit losses. I find that farmers are able to recover only a limited amount of their lost

profits by adapting. Specifically, I estimate that in the face of sustained adverse weather conditions

adaptation recovers, at most, 19% of lost profits and, more likely, only 9%.

This paper contributes to a rapidly growing literature on climate change adaptation.5 Re-

searchers have used a variety of techniques to identify the magnitude and efficacy of adaptation,

including the Ricardian method or hedonic valuation method (Mendelsohn et al., 1994; Fleis-

cher et al., 2008; Seo et al., 2010; Kurukulasuriya et al., 2011; da Cunha et al., 2014) and vari-

ants of the Ricardian method that incorporate panel data (Luis and Orlando, 2015) and structural

agro-economic models (Kurukulasuriya and Mendelsohn, 2008). Researchers have also analyzed

adaptation by looking at long-run responses to one-time environmental shocks (Hornbeck, 2012;

Deryugina, 2013; Hornbeck and Naidu, 2015), applying instrumental variables approaches that

address the endogeneity of adaptation (Di Falco and Veronesi, 2013, 2014), using economic mod-

els that integrate biophysical modeling (Finger et al., 2010), employing multinomial logit choice
3I define a dry year to be a year in which rainfall is below the 20th percentile of the rainfall distribution for a

particular location.
4The crops with lower water needs have lower expected yields, which is why farmers do not plant them exclusively.
5Dell et al. (2014) present a helpful synthesis of this literature.
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models (Seo and Mendelsohn, 2008; Wang et al., 2010), testing whether new technologies have

changed weather impacts over time (Barreca et al., 2015), analyzing differential weather impacts

by the long-run frequency of the event (Deschênes and Greenstone, 2011; Hsiang and Narita,

2012), estimating correlations between farmer behavior and their perceptions of changes in cli-

mate (Bryan et al., 2009), and, lastly, using a “long-difference” approach that compares short-run

weather impacts with long-run impacts (Dell et al., 2012; Burke and Emerick, 2015).

My paper contributes to the adaptation literature in multiple ways. First, my study is unique

because I use a household data set that spans several decades. The existing literature on adaptation

uses either administrative data (Dell et al., 2012), cross-sectional household data (Bryan et al.,

2009; Mukherjee and Schwabe, 2015), or a short panel of household data that spans less than 10

years (Luis and Orlando, 2015). My paper is also unique because I estimate adaptation to large-

scale, cyclical, decadal variation in climate that exhibits both spatial and temporal variation. The

bulk of the existing literature on adaptation exploits either cross-sectional (spatial) variation in

climate, a one-time shock to climate, or perceived changes in climate that are measured at a single

point in time.

My unique data set and source of climate variation allow me to make a methodological con-

tribution to the literature. Specifically, I can estimate how farmers adapt to medium-run (10-20

year) changes in climate that are occurring over the span of my data set, while controlling for

unobserved heterogeneity. Put differently, my data allow me to look at how the behavior of a

household changes across several decades, in response to time-varying changes in climate. My

estimates of decade-to-decade adaptation are an important complement to the long-run adaptation

estimates that are generated by methods that rely on purely spatial climate variation.6 Conversely,

my estimates are also a complement to studies that estimate how farmers respond to recent per-

ceived changes in climate. Typically, these studies use cross-sectional household data and focus

only on behavior and climate perceptions from the past 10-20 years. My multidecadal household
6When adaptation is estimated using cross-sectional climate variation, the relationship between farmer behavior

and climate is based on the long-run climate of each location. As a result, these estimates are best thought of as
estimates of how farmers will adapt to climate change in a long-run, or steady state, setting.
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panel, on the other hand, allows me to control for unobserved farmer heterogeneity and to analyze

adaptation over several decades. In addition, I have built a model that allows me to disentangle

the effects of wealth and expectations. This is a methodological contribution because it allows me

to directly test whether farmers are updating their beliefs about future rainfall in response to past

rainfall, even in the absence of explicit data on farmers’ perceptions about climate change.

There are several important limitations of my study to acknowledge. First, this study only

analyzes irrigation and crop choice. Data limitations do not permit me to study other potential

adaptations, such as adjusting fertilizer and agricultural inputs (Duflo et al., 2011), shifting sow-

ing dates (Giné et al., 2009), purchasing crop insurance (Di Falco et al., 2014), switching out of

agriculture (Rose, 2001), or migrating (Viswanathan and Kavi Kumar, 2015). Second, since the

monsoon regimes affect only precipitation, I do not analyze adaptation to temperature changes.

Third, since my household data set spans several decades, there is substantial, non-random attri-

tion, which causes my analyzed sample to include households that are, on average, wealthier than

a representative sample would be.7 Fourth, there are potential threats to the exclusion restriction

for my instrumental variables strategy, which I discuss in greater detail in Section 5. Fifth, due

to data limitations, I am not fully able to rule out the possibility that depletion of water supplies

or confounding factors, such as changes in agricultural technology or policies, are driving my

results.8

The paper is organized as follows. Section 2 describes the monsoon phases in greater detail.

Section 3 presents a model of climate, irrigation, and crop choice. Section 4 describes the data,

and Section 5 proposes the empirical strategy. Section 6 presents the main results. In Section

7, I discuss several robustness tests that I perform in a separate, supplementary file. Section 8

calculates the fraction of lost profits farmers recovered by adapting. Section 9 concludes.
7Appendix A discusses the attrition in more detail and its implications for my study.
8Appendix C discusses these issues in greater detail.
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2 Background on Interdecadal Rainfall Variability

Indian agriculture depends heavily on the summer monsoon, which occurs during June, July, Au-

gust, and September (Krishna Kumar et al., 2004). Because India’s climate is semi-arid, wetter

monsoons increase agricultural output, and drier monsoons decrease it (Das, 1995; Jayachandran,

2006). Monsoon rainfall exhibits high interannual variability, as shown in Figure 3. The mon-

soon also undergoes interdecadal variability, in the form of wet and dry phases that typically each

last for about three decades (Pant and Kumar, 1997). Meteorologists refer to these as meditional

and zonal regimes, respectively. Figure 3 shades the wet regimes gray; Figure 1 smoothes annual

rainfall with a moving average filter, to further highlight the regimes.9

The monsoon regimes cause average rainfall to vary more from decade to decade than it would

if rainfall was independent and identically distributed (i.i.d.).10 This persistent decadal variation

means that lagged rainfall has predictive value for future rainfall. If rainfall were i.i.d., then lagged

rainfall would not have this predictive element. Rational farmers should notice these persistent

rainfall variations and update their future rainfall expectations in response. This updating could

occur even if farmers were not aware of the existence of the monsoon regimes, per se. On the other

hand, if rainfall were i.i.d., lagged rainfall would have no predictive value, and it would be irrational

for farmers to update their rainfall expectations in response to it. The statistical significance of the

decadal variations allows me to interpret a farmer’s response to lagged rainfall as evidence of

rational adaptation, rather than an indicator of irrational behavior.11

The monsoon regimes are not geographically homogeneous. There is significant spatial vari-
9Meteorologists widely agree upon the existence of the monsoon regimes (Subbaramayya and Naidu, 1992; Kri-

palani and Kulkarni, 1997; Pant and Kumar, 1997; Pant, 2003; Varikoden and Babu, 2014). The precise mechanisms
that generate the regimes are not well understood, in part due to a lack of good quality data for a sufficiently long
period. One theory is that an atmospheric-oceanic feedback mechanism induces the regimes (Wang, 2006).

10Mooley and Parthasarathy (1984) and Kripalani and Kulkarni (1997) perform statistical analysis demonstrating
that the monsoon regimes are statistically significant. That is, they demonstrate that the interdecadal rainfall variability
is greater than what we would expect under an i.i.d process. In Section B of the supplementary file, I describe their
analysis in greater detail and also run an additional test that further verifies the monsoon’s non-stationarity.

11I have not been able to find descriptive survey data regarding the question of whether farmers in India are aware
of the monsoon regimes or the decadal rainfall variation that they induce. However, Palanisami et al. (2014) note
several surveys that find that, more recently, farmers have noticed changes in temperature and rainfall that have been
induced by anthropogenic climate change, which are comparable in magnitude to the changes that I analyze in my
study.
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ation in the length and timing of the regimes (Subbaramayya and Naidu, 1992). In particular,

rainfall in the southern peninsula and the easternmost region tends to be out of phase with the rest

of the country (Wang, 2006). Figure 2 displays smoothed rainfall graphs for India’s five meteo-

rological regions, highlighting the spatial variation. Providing more detail, Figures 4 and 5 map

district rainfall from the previous decade, for the three survey years of the REDS data set and at

four decade intervals for the WB data set.12 The spatial variation in recent rainfall allows me to

include year fixed effects in my regressions and, hence, distinguish rainfall adaptation from time

trends in irrigation and crop choice.

3 Theoretical Framework

I now derive tests for farmer adaptation. Sections 3.1 and 3.2 outline the climate and agricul-

tural models, respectively. Section 3.3 shows the farmer’s maximization problem, and Section 3.4

presents the adaptation tests.

3.1 Climate Model

I model the monsoon regimes as a hidden Markov process. Let s

t

indicate the monsoon regime in

year t, with s

t

= 0 denoting a dry regime and s

t

= 1 denoting a wet regime. Year t rainfall can be

written as:

r

t

= q
0

+ ds

t

+ u

t

, (1)

where q
0

is the average rainfall during a dry regime, q
0

+ d is the average wet regime rainfall,

and u

t

represents year-to-year rainfall variability. The monsoon regimes are persistent but not

permanent, and they switch according to a Markov process. During a dry regime, the probability

of switching to a wet regime during the next period is p

0

. During a wet regime, the probability of

12I choose rainfall from the previous decade as a rough measure of the current monsoon regime (Kripalani and
Kulkarni, 1997).
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switching to a dry regime is p

1

. Each year, farmers observe r

t

and use this information to update

their belief about the current regime state, which they do not observe. A farmer’s belief about the

current regime state determines his expectation of the next period’s rainfall.

3.2 Agricultural Model

In my model, each farmer lives for two periods. In each period t, the farmer allocates his wealth,

w

t

, between an irrigation asset, i

t

, and another agricultural asset, a

t

, such that a

t

+ i

t

= w

t

.13 The

farmer also chooses a crop portfolio each period. The farmer has one unit of land, which he divides

between a drought-tolerant crop and a crop that is relatively more sensitive to drought.14 Let r
t

be

the area planted with the drought-tolerant crop, and let 1 � r
t

be the drought-sensitive crop area.

Profits are determined by the asset mix, the crop portfolio, and rainfall r

t

. I assume a quadratic

profit function of the form:

p
t

=b
a

a

t

+ b
i

i

t

+ brr
t

+
1

2

d
aa

a

2

t

+
1

2

d
ii

i

2

t

+
1

2

drrr2

t

+ dri

r
t

i

t

+ d
ir

i

t

r

t

+

+ drr

r
t

r

t

+ d
r

r

t

+ e
t

(2)

where p
t

is profits per acre and e
t

is a mean zero productivity shock.15 To establish my adap-

tation tests, I assume that:

1. Profits are increasing in rainfall (d
r

> 0). This assumption is consistent with earlier work on

India (Jayachandran, 2006; Cole et al., 2012), and I verify it in Section 6.1.

2. The return to irrigation is higher during periods of low rainfall (d
ir

< 0). This assumption,

while intuitive, is also verified in Section 6.1.

3. The drought-tolerant crop is less profitable, on average, than the drought-sensitive crop

(br < 0). This assumption is necessary to ensure that farmers do not plant all their land

13Examples of other agricultural assets include tractors, tillers, ploughs, threshers, and livestock. I abstract away
from the possibility of credit markets and non-agricultural assets.

14I will test my model with data that includes a large number of crops, with a range of different water needs, but
for clarity in my theoretical model, I assume there are only two different crops.

15I assume this reduced form expression for profits for tractability purposes.
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with the drought-tolerant crop.

4. Low rainfall reduces the profitability of the drought-tolerant crop less than it reduces the

profitability of the drought-sensitive crop (drr

< 0). This assumption comprises my defini-

tion of the drought-tolerant crop.

3.3 Maximization Problem

Each farmer maximizes:

u(c
1

) + bE

1

[u(c
2

)] (3)

subject to:

c

1

= w

1

+ p
1

� w

2

and c

2

= w

2

+ p
2

, (4)

where 0 < b < 1. For tractability, I assume constant absolute risk aversion utility of the form:

u(c
t

) = �e

�hc

t

. (5)

The timing of the model is as follows. To begin, the farmer chooses his first-period assets and

crop portfolio, based on initial wealth and rainfall expectations. Next, first-period rainfall occurs

and first-period profits are determined. With these profits in hand, the farmer chooses how much

to consume in the first period and how much wealth to bring into the second period. The farmer

also chooses his second-period asset mix and crop portfolio. Lastly, second-period rainfall occurs,

and second-period profits are determined.

3.4 Tests for Adaptation

I now derive tests to determine whether farmers are updating their rainfall expectations in response

to past rainfall and whether they are adapting their agricultural decisions accordingly. I lack data

on farmer rainfall expectations, but the structure of my model allows me to test for adaptation,
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even without explicit data on expectations.

To clarify the analysis, I introduce the following notation. Let µ
1

= E

0

(r
1

) and µ
2

= E

1

(r
2

)

denote rainfall expectations. Let w

⇤
2

denote the optimal amount of wealth to bring into second-

period wealth. Let i

⇤
2

and r⇤
2

denote the optimal second-period irrigation and crop choice decisions.

Note that i

⇤
2

and r⇤
2

depend solely on µ
2

and w

⇤
2

. Furthermore, w

⇤
2

itself is a function of w

1

, µ
1

, r

1

and µ
2

.

3.4.1 Tests for Irrigation Adaptation

To begin, note that the total derivative of second-period irrigation with respect to first period rainfall

is:

di

⇤
2

dr

1

=
∂i

⇤
2

∂w

2

dw

⇤
2

dr

1

+
∂i

⇤
2

∂µ
2

dµ
2

dr

1

=
∂i

⇤
2

∂w

2


∂w

⇤
2

∂r

1

+
∂w

⇤
2

∂µ
2

dµ
2

dr

1

�
+

∂i

⇤
2

∂µ
2

dµ
2

dr

1

.

Rearranging terms, we get:

di

⇤
2

dr

1

=
∂i

⇤
2

∂w

2

∂w

⇤
2

∂r

1| {z }
wealth effect

+


∂i

⇤
2

∂w

2

∂w

⇤
2

∂µ
2

+
∂i

⇤
2

∂µ
2

�

| {z }
expectations effect

dµ
2

dr

1

.

I have written the response of second-period irrigation to first-period rainfall as the sum of a

wealth effect and an expectations effect. In Section C of the supplementary file, I demonstrate that

the signs of the partial derivatives in this expression are:

∂i

⇤
2

∂w

2

> 0,

∂i

⇤
2

∂µ
2

< 0,

∂w

⇤
2

∂r

1

> 0,

∂w

⇤
2

∂µ
2

< 0.

Taken together, the signs of these partial derivatives imply that, for irrigation, the wealth effect

is positive, and the expectations effect is negative.16

Having separated the influences of wealth and expectations, I present two tests for whether
16I have used a CARA utility function for tractability purposes. I am not able to prove the signs of the wealth effect

and the expectations effect for a broader range of utility functions.
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farmers are adapting their irrigation in response to expected rainfall.

Proposition 3.1 If farmers increase their irrigation investment after low rainfall, this demon-

strates adaptation:

di

⇤
2

dr

1

< 0 implies

dµ
2

dr

1

> 0

Proposition 3.2 If, conditional on wealth, farmers increase their irrigation investment after low

rainfall, this also demonstrates adaptation:

di

⇤
2

dr

1

���
w

2

=constant

< 0 implies

dµ
2

dr

1

> 0

Proposition 3.1 is an unconditional test that does not require accounting for wealth. Proposition

3.1 is useful because it allows me to test for adaptation, even in data sets that lack information on

wealth. This is relevant to this study because my two data sets differ in this regard. As Section 4

will explain, my household data set includes data on wealth, but my district data set does not. On

the other hand, Proposition 3.2 is a conditional test that incorporates a measure of wealth. It is a

more powerful test than Proposition 3.1. If farmers are adapting, but the size of the wealth effect

dominates the expectation effect, then Proposition 3.2 will detect the presence of adaptation but

Proposition 3.1 will not. Additionally, because Proposition 3.2 separates out the wealth and expec-

tation effects, the empirical analog of Proposition 3.2 can more accurately estimate the magnitude

of the expectation effect. Proposition 3.1, on the other hand, conflates the wealth and expectation

effects and so, when estimated, it will understate the size of the expectation effect.

3.4.2 Test for Crop Adaptation

Lastly, I derive a test for crop adaptation. I take the derivative of the second-period drought-tolerant

crop area with respect to first-period rainfall. Rearranging terms, I get:

dr⇤
2

dr

1

=
∂r⇤

2

∂w

2

∂w

⇤
2

∂r

1| {z }
wealth effect

+


∂r⇤

2

∂w

2

∂w

⇤
2

∂µ
2

+
∂r⇤

2

∂µ
2

�

| {z }
expectations effect

dµ
2

dr

1

In Section C of the supplementary file, I demonstrate the following signs of the partial deriva-

tives:
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∂r⇤
2

∂w

2

< 0,

∂r⇤
2

∂µ
2

< 0,

∂w

⇤
2

∂r

1

> 0,

∂w

⇤
2

∂µ
2

< 0.

Substituting in these partial derivatives, I find that, for crop choice, the wealth effect is negative

and the sign of the expectation effect is ambiguous.17 Therefore, it is not possible to test for

crop adaptation without controlling for wealth. On the other hand, if I hold wealth constant, this

removes the wealth effect and makes the sign of the expectations effect unambiguously negative.

This generates the following test for adaptation:

Proposition 3.3 If, conditional on wealth, farmers plant a greater area of drought-tolerant crops

after low rainfall, this demonstrates adaptation to climate:

dr⇤
2

dr

1

���
w

2

=constant

< 0, then

dµ
2

dr

1

> 0

The necessity of controlling for wealth means that I can test for crop adaptation in my house-

hold data set but not in my district data set. Without a wealth control, a negative correlation

between lagged rainfall and drought-tolerant crop areas could be occurring solely through a wealth

channel and, hence, would not provide evidence of adaptation.

4 Data Sources and Summary Statistics

I test my model with two agricultural data sets: a household panel and a district panel. The

household panel—the Rural Economic and Demographic Survey—was collected by the National

Council of Applied Economic Research (NCAER).18

The data covers three rounds (1970/71, 1981/82, and 1998/99) and 259 villages across the 17

major states of India. In 1971, 4,527 households were surveyed. In 1982, the original villages

were revisited, and 4,979 households were surveyed, of which roughly two-thirds were the same

households from the 1971 round. The 1999 round covers 7,474 households in the same villages,

including all the households from 1982, any households that split off from the original 1982 house-

holds, as well as a small random sample of new households. Figure 2 in Appendix A displays a
17I have used a CARA utility function for tractability purposes. I am not able to prove the signs of the wealth effect

and the expectation effect for a broader range of utility functions.
18The data can be downloaded from http://adfdell.pstc.brown.edu/arisreds data/.
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map with the locations of the REDS villages. I restrict my analysis to households that either were

surveyed in multiple rounds or split off from a previously surveyed household.19 The REDS survey

includes detailed data on irrigation, crop areas, assets, wealth, profits, and inherited assets.

The district panel—the India Agriculture and Climate Data Set—was compiled by a World

Bank research group and covers 271 districts across 14 states for each year between 1956 and

1987 (Sanghi et al., 1998). Figure 1 in Appendix A displays the districts covered in the World

Bank data set. The data set includes information on irrigated areas, crop areas, crop yields, and

prices, but does not include information about assets, wealth, or profits.

Panel A in Table 1 presents the summary statistics for agricultural variables of both data sets.

For the household data set, agricultural profits per acre are measured as crop receipts minus crop

expenses, divided by the area of land cultivated. The World Bank data set lacks information on

crop expenses. Instead, I use crop revenue per acre of land cultivated.20

For the household data, I define irrigation investment as a dummy variable that is equal to one

if the household invested in irrigation during the recall period, which is defined as the 12 months

prior to the survey interview. Investing in irrigation is defined as purchasing materials, hiring labor,

or using family labor to construct new irrigation assets, purchase new irrigation assets, or improve

existing irrigation assets.21,22 The district data lacks direct information on irrigation investment, so

I define irrigation investment as the log of the 1-year change in the area of irrigated land.23 For the

household data set, I measure wealth as the sum of the value of irrigation assets, farm equipment,

livestock, non-farm assets, housing, durable goods, farm inventory, and financial assets minus

debts.24

19Unfortunately, due to the long-time span between the survey rounds, the REDS data set suffers from non-
negligible attrition. In Appendix A, I discuss this attrition and its implications for my study.

20Table 1 also includes information about inherited irrigated land, which is used in my empirical strategy and is
discussed in greater detail in Section 5.

21Irrigation assets include wells, Persian wheels, and irrigation channels.
22The survey contains information on the dollar value of irrigation investment. However, I choose to use a dummy

for irrigation investment, because a substantial fraction of the dollar value of investment is the value of family labor,
which is imputed and appears to suffer from substantial measurement error.

23In order to address a few negative values of the change in the area of irrigated land, I first do a linear transforma-
tion where I add a small amount to the 1-year change in the area of irrigated land, so that log function is defined for
all districts in all years.

24I do not include the value of land because land markets in India are inactive, and land prices are unreliable. I
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To analyze the crop choices of farmers, I construct a measure of the water need of the crop

portfolio planted. To do this, I use the daily crop water need values (in centimeters per day)

provided on the Agriinfo.in (2015) website. These values, which are specific to the way that crops

are grown in India, are presented in Table 2. These numbers represent the average daily amount of

water each crop needs, over the course of its growing season, in order to achieve optimal growth.

For each farmer or district, I construct an area-weighted average of the water need across all of

the crops grown. I also construct a separate water need index that is only for the crops that are

primarily grown during the monsoon season. This index drops the crops of wheat, barley, mustard,

oilseeds, and potato, which are primarily grown during the dry season.25

I merge the agricultural data with gridded weather data from the Terrestrial Precipitation:

Monthly Time Series (1900–2008), version 2.01, and the companion Terrestrial Air Temperature

data set.26 The weather data for each 0.5-degree latitude–longitude grid point measure combines

information from 20 nearby weather stations, using an interpolation algorithm based on the spheri-

cal version of Shepard’s distance-weighting method. To merge the weather data with my household

data set, I use the rainfall from the weather grid point nearest to each village. Because some vil-

lages are closest to the same weather grid point, this method yields 163 unique grid points that

provide weather data.27 For the district data set, I use the rainfall from the grid point nearest to the

district center. This results in a sample of 268 unique grid points that provide weather data.

I use several different rainfall measures, all of which are based on growing season rainfall.28 I

measure current year rainfall as the z-score deviation from that location’s historical mean, where

deflate wealth values to 1971 rupees. Data on farm inventory is only available for the 1999 REDS round, so I only
include it for that round. My results are unchanged if I drop farm inventory from my measure of wealth. Table 1 also
includes information about inherited wealth, which is used in my empirical strategy and is discussed in greater detail
in Section 5.

25I do not have season-specific crop planting data in my household or district datasets. Therefore, I make this
distinction based on which crops are typically grown in the monsoon versus non-monsoon seasons.

26Kenji Matsuura and Cort J. Willmott, at the Center for Climatic Research, University of Delaware, constructed
the data sets with support from IGES and NASA.

27Of these 163 grid points, 112 are used for a single village, 34 grid points are used for two villages each, 12 grid
points are used for three villages each, and 7 grid points are used for four or more villages each.

28Based on the state-specific monthly rainfall charts in Pant and Kumar (1997), the growing season is defined as
June through September for most of the country, and June through December for the peninsular region (located in the
south).
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I use the entire range of my rainfall data (from 1900–2008) to construct the historical means and

standard deviations. I use two different specifications to capture the decadal variability of the

monsoon. In the first specification, I calculate the simple average of the rainfall z-scores from the

past decade. Figures 4 and 5 display the values of these lagged average rainfall for each district,

for each year of the REDS survey and for representative years from the WB survey.

I also use a specification where I measure lagged rainfall as the number of especially wet or

dry years over the past decade. Following Jayachandran (2006), I use the 20th percentile as the

cutoff for a dry year and the 80th percentile as the cutoff for a wet year.29 I choose these lagged

decadal rainfall measures as a rough indicator of the current monsoon regime.30 In Figures 3 and

4 in Appendix B, I present graphs of the number of dry shocks for the relevant years of the REDS

and World Bank data sets in order to demonstrate the variation in this rainfall measure.31

Panel B of Table 1 gives the means and standard deviations for the rainfall variables for the rel-

evant years of the household and district surveys. In addition, since the variation in decadal rainfall

is critical for my empirical strategy, I present additional discussion of this variation in Appendix B.

Specifically, I present a more detailed summary of the statistics of the rainfall variables. As noted

above, I present maps of the number of dry shock sin the previous decade for relevant survey years.

I also construct spatial correlograms, which allow me to measure the spatial autocorrelation of my

decadal lagged rainfall variable.32

29As with the z-score, I use the entire span of the rainfall data, from 1900–2008, to construct the percentiles.
30In Section A.1 of the supplementary file, I test whether my regressions are robust to using an alternate 5- or

15-year rainfall window.
31The corresponding graphs of wet shocks from the past decades are available upon request from the author.
32Decadal lagged rainfall exhibits substantial spatial autocorrelation. In Appendix C.1, I adjust my regression

specifications to be robust to this spatial autocorrelation.
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5 Empirical Strategy

5.1 The Returns to Irrigation

I begin by estimating the effects of irrigation and rainfall on profits. To verify the assumptions

from Section 3.2, I need to demonstrate that higher rainfall both increases profits and reduces the

returns to irrigation. I run the following regression for agricultural households:

p
ijt

=b
1

rain

jt

+ b
2

propirr

ijt

+ b
3

rain

jt

⇤ propirr
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+ b
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+
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. (6)

The dependent variable p
ijt

represents agricultural profits per acre for household i, in village

j, in year t. The explanatory variables are current rainfall rain

jt

, the proportion of irrigated land

propirr

ijt

, wealth wealth

ijt

, temperature temperature

jt

, a year fixed effect d
t

, a household fixed

effect k
ij

, and an error term e
ijt

that includes all (non-weather) productivity shocks. The household

survey follows households after household splits and after changes of the household head. There-

fore, my household fixed effect is common to all parts of the household dynasty that have broken

off from the original surveyed household, and can be thought of as a dynasty fixed effect.

Despite the dynasty fixed effect, there are two potential sources of endogeneity for propirr

ijt

in

equation 6. The first is that, despite the dynasty fixed effect, propirr

ijt

may be correlated with e
ijt

if households can adjust their irrigation investments in response to the current productivity shocks.

A second source of concern is that propirr

ijt

may be correlated with (unobserved) farmer ability.

The dynasty fixed effect controls for average farmer ability across all households within a common

dynasty. However, if there is variation in farmer ability amongst the households within a dynasty,

then e
ijt

may be correlated with propirr

ijt

, despite the dynasty fixed effect.

Similarly, there are two potential sources of endogeneity for wealth

ijt

. First, if the current

period’s productivity shocks are correlated with lagged productivity shocks, then wealth will be

endogenous (because lagged productivity shocks affect wealth).33 Second, as above, if there is
33For the 1999 round of REDS I have data on the value of the current farm inventory and I can include this in my

measure of wealth, which eliminates the concern for that survey round. However, the earlier rounds of REDS do not
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variation in farming ability within a dynasty, and farming ability is correlated (within the dynasty)

with wealth, this will also cause endogeneity.

I employ an instrumental variables strategy that attempts to mitigate these endogeneity con-

cerns. The REDS survey contains information, for each household and split-off household, about

the amounts of wealth, land, and irrigated land that were inherited at the time of household for-

mation. Typically in India, at the time of a father’s death, each son in the household will inherit

land and become head of his own separate household (Fernando, 2014). I instrument for propirr

ijt

and wealth

ijt

with inhpropirr

ijt

—the proportion of inherited land that was irrigated at the time

of inheritance—and inhwealth

ijt

. Earlier work has used the same instrumental variables strategy

(Foster and Rosenzweig, 1995, 2001, 2010).

Due to household splits, many dynasties include multiple household heads, which gives me

variation in these inheritance variables, even in the presence of the dynasty fixed effect.34 I now

discuss the exclusion restriction for my instruments and the extent to which these instruments re-

duce the endogeneity issues outlined above. First, consider the endogeneity that arises due to tran-

sient, current-period productivity shocks (that are not due to unobserved farmer ability). Because

inheritances occurred in an earlier period, we should expect that inherited wealth and inherited

irrigated land should be less correlated with transient current period productivity shocks than cur-

rent period wealth and current period irrigated land. Thus, we should expect the instruments to

significantly reduce this source of endogeneity bias.

Second, consider the endogeneity that arises due to variations in farmer ability within a dynasty.

Relative to this source of endogeneity, there is potential concern about whether the exclusion re-

striction holds. For example, if a son with higher farming ability inherits more wealth and more

irrigated land, then the exclusion restriction would be violated. However, there is evidence that

inheritances may not be strongly correlated with variations in sons’ ability (Foster and Rosen-

zweig, 2002; Fernando, 2014). Fernando (2014) finds that the amount of inherited land is very

include farm inventory in the survey; so, for those rounds, concerns about lagged productivity shocks are still an issue.
34Amongst the households that I analyze, 42% come from dynasties with multiple household heads. My estimate

of the coefficients of wealth and the proportion of irrigated land will be a local average treatment effect based on these
households.
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strongly dictated by the number of sons in the family (and the total amount of land), and states that

“equal division amongst sons [at the time of a father’s death] is the norm.”35,36 This suggests that

household inheritances may not be strongly correlated with farmer ability. I cannot fully prove that

inheritances are not correlated with unobserved household ability, but to the extent that these inher-

itances are less correlated than current wealth and current irrigated land, my instrumental variables

strategy should at least reduce the endogeneity bias.37

Due to data limitations, my district regression is a modified version of equation 6. The unit of

observation for the regression is district j in year t. I use agricultural revenue per acre, revenue

jt

,

as the dependent variable. I do not control for wealth. I include propirr

jt

, but do not instrument

for it. The household fixed effect becomes a district fixed effect k
j

.

For both data sets, finding b
1

> 0 and b
3

< 0 will confirm the assumptions of Section 3.2,

namely that higher rainfall increases profits and also reduces the returns to irrigation.

5.2 Tests for Irrigation Adaptation

I next analyze how irrigation investment responds to lagged rainfall:
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In the household specification, irr inv

ijt

is a dummy variable equal to 1 if, during the recall

period, a household purchased irrigation equipment or used labor to create/improve irrigation as-

sets.38 The explanatory variables are past decade rainfall decaderain

jt

, current year rainfall rain

jt

,

1-year lagged rainfall rain

jt�1

, a year fixed effect l
t

, a household fixed effect µ
ij

, and an error term

z
ijt

.39 I measure decaderain

jt

in two ways. The first measure is a simple average of the rainfall

35I haven’t found a similar analysis of irrigated land but it seems plausible that it would follow the same pattern.
36Note that even if there is purely equal division of inheritances amongst sons, changes across generations of

household heads provides variation of the inheritances within each dynasty.
37In Appendix C.1, I also rerun my regressions without instrumenting to see how this affects my estimates.
38I do not use the rupee value of investment, because a large component of it is family labor, the value of which is

measured with a lot of noise.
39I include lagged rainfall because residual impacts of last year’s rainfall may influence this year’s irrigation and

cropping decisions directly, independent of an expectations/adaptation effect. In addition, my household data set
does not include the specific interview date for each household, so including lagged rainfall is important because, for
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z-scores from the past decade. The second measure tabulates the proportion of years in the past

decade that were especially wet or dry. Following Jayachandran (2006), I use the 20th percentile

as the cut-off for a dry year and the 80th percentile as the cut-off for a wet year.

The coefficient of interest in this regression is a
1

. My model demonstrates that the sign of a
1

is ambiguous and must be determined empirically. If the wealth effect dominates, then a
1

will be

positive. Irrigation investment will increase after wet decades, due to an accumulation of wealth

and increased investment in all assets. On the other hand, if farmers are adapting to expected

rainfall and the size of this effect is larger than the wealth effect, then we will find a
1

< 0.

Irrigation investment will increase after dry decades, due to farmers expecting more dry years in

the future. Thus, finding a
1

< 0 provides evidence of adaptation.40

I control for current year rainfall because farmers can invest in irrigation at any time during

the year. Thus, a farmer’s observation of current year rainfall (based on, say, the first half of the

growing season) might directly affect his decision to invest in irrigation that period. This response

would not indicate adaptation to expected future year rainfall, but would simply reveal within-

season adjustment to current year rainfall.41

Propositions 3.1 and 3.2 demonstrate that I can test for irrigation adaptation with or without

a wealth control. Thus, for completeness, I run a second household specification where I control

for wealth. Once I have isolated the wealth effect, my model predicts that a
1

= 0 if farmers are

not adapting. On the other hand, if farmers are adapting, then a
1

< 0. The variable wealth

ijt

is endogenous in this regression, and so I instrument it with inhwealth

ijt

. The validity of the

instrument follows the same logic as for equation 6.

For my district regression, I define irr inv

jt

as the log of the 1-year change in the district’s

irrigated area, I use a district fixed effect, and I do not control for wealth. Proposition 3.1 demon-

strates that I can test for irrigation adaptation, even in the absence of a wealth control. As with the

households interviewed early in survey year, rainfall from the previous calendar year may be the most relevant.
40Finding a positive coefficient would be inconclusive; it would neither demonstrate nor rule out the possibility of

adaptation.
41I also control for rainfall from the previous year because the exact date of the REDS survey for each household

is unknown, but all households use a 12-month recall period for their answers. Therefore, for some households, the
actual relevant rainfall year may be earlier than the year of the survey.
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household regression, finding a
1

< 0 provides evidence of adaptation.

5.3 Test for Crop Adaptation

Lastly, I test for crop adaptation. I only perform this test with my household data set, and my

regression is of the form:
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where water need

ijt

is the area-weighted water need of the farmer’s crop portfolio. As men-

tioned above, I control for current year rainfall because farmers may have some knowledge of the

current year’s rainfall before they sow all of their crops. As in the irrigation regression, a response

of crop choice to current year rainfall would indicate a within-season adjustment to rainfall, but

would not provide evidence of adaptation to the expected future year rainfall.42

I control for wealth

ijt

because, as demonstrated in Section 3.4.2, without a control for wealth

ijt

,

I could not interpret g
1

as evidence of adaptation. As in the equation 6, wealth is endogenous and

I instrument for it with inherited wealth. The validity of the instrument follows the same argument

as its validity in equation 6. Finding g
1

= 0 demonstrates that farmers are not adapting their crop

portfolios. Conversely, in the presence of adaptation, I expect to find g
1

> 0.

6 Results

6.1 The Returns to Irrigation

Table 3 tests the impacts of rainfall and irrigation on profits. In the household regressions (shown

in columns 1 and 2) the dependent variable is profits per acre. In column 1, I deduct the value of

family labor, and in column 2, I do not. I measure rainfall using quintiles to allow for non-linear

effects. I instrument for the proportion of irrigated land with the proportion of inherited irrigated
42I also control for rainfall from the previous year because the exact date of the REDS survey for each household

is unknown, but all households use a 12-month recall period for their answers. Therefore, for some households, the
actual relevant rainfall year may be earlier than the year of the survey.
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land.43 In the district regression (shown in column 3) the dependent variable is revenue per acre,

and I do not instrument for irrigation. For both data sets, the coefficients demonstrate that higher

rainfall increases profits and that the returns to irrigation rise during dry years, thus confirming the

assumptions of Section 3.2. In Table 3, and all the tables below, standard errors are clustered at the

rainfall grid point level to account for correlation in error terms between adjacent households (or

districts) that share the same value of rainfall due to the resolution of the rainfall data.44

6.2 Tests for Irrigation Adaptation

Table 4 tests whether farmers are adapting their irrigation investments in response to lagged rain-

fall. Recall that I can test for irrigation adaptation either with, or without, a wealth control.

Columns 1 through 4 use the household data and, in columns 2 and 4, I control for wealth, which is

instrumented for with inherited wealth. Columns 5 and 6 use the district data and do not control for

wealth. In all columns, I find the coefficient of lagged rainfall is negative, which provides evidence

of adaptation. In terms of magnitudes, column 4 demonstrates that a dry year in the preceding

decade increases the probability of irrigation investment during the recall period by 1.2 percentage

points. The baseline probability of investing in irrigation during the recall period is 5%.45

6.3 Test for Crop Adaptation

In Table 5, I test for crop adaptation using the household data set. I control for wealth in all columns

and instrument for it with inherited wealth.46 Columns 1 and 2 look at the daily water need of all

crops grown in the year, and columns 3 and 4 focus on the daily water need of monsoon season

crops only. The columns that use the average rainfall specification are not significant. However,
43The F-statistics, presented at the bottom of the table, indicate that the first-stage regressions are sufficiently

strong.
44In Appendix C.1, I test the robustness of my adaptation results to using spatially correlated standard errors.
45The F-statistics for columns 2 and 4, presented at the bottom of the table, indicate that the first-stage regressions

for wealth are sufficiently strong. For concision, I don’t display the first-stage regression coefficients, but they are
available upon request.

46The F-statistics, presented at the bottom of the table, indicate that the first-stage regressions are sufficiently
strong. For concision, I do not display the first-stage regression coefficients, but they are available upon request.
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the columns that use the wet/dry shock rainfall specification are significant at the 1% level for

both all-season crops and monsoon season crops. The coefficient in column 2 indicates that each

additional dry year in the past decade reduces the average water need of the crops planted by 0.16

mm/day, relative to an average water need of 7.3 mm/day. Restricting the analysis to monsoon

season crops, I find that each additional dry year in the past decade reduces the average daily water

need of a farmer’s monsoon season crop portfolio by 0.2 mm/day, relative to an average water need

of monsoon season crops of 8 mm/day.47

To further understand the crop adaptation results, I run individual crop regressions. In each

column of Table 6, the dependent variable is the proportion of the farmer’s land that is planted

with a specific crop for the top eight crops by area in the REDS data set. These crops are (in order

of area): rice, wheat, pulses, millet, cotton, sorghum, groundnut, and maize). Consistent with the

average crop portfolio results in Table 5, I find that after decades with more dry years, farmers plant

less proportional area with rice (1.075 mm/day water need) and more with pulses (3.50 mm/day

water need). These are the crops with the highest and lowest water needs, respectively. I also

find that after wet shocks, farmers plant less millet (5.75 mm/day) and sorghum (5.75 mm/day),

possibly because they are switching toward planting more area with the higher water need crop

of rice. I also find that after decades with more wet shocks, farmers plant more wheat (4.25

mm/day) and more cotton (5.25 mm/day). These results are counterintuitive because these crops

have slightly lower water needs than millet and sorghum. However, the coefficient in the wheat

regression is only significant at the 10% level, and is of smaller magnitude than the coefficients for

the other crops. Lastly, the coefficients for peanut and maize are not statistically significant, but

this may be because they represent a smaller total area.

Taken together, the irrigation and crop regressions suggest evidence that farmers are adapting

in response to recent decadal rainfall. However, it is important to note that due to attrition, the

household sample in REDS is not nationally representative.48 Specifically, the famers in my sample
47The full list of crops analyzed is shown in Table 2. For the monsoon season crops, I drop barley, mustard,

oilseeds, potato, and wheat, all of which are primarily grown during the dry season.
48This attrition is discussed in greater detail in Appendix A.
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have, on average, higher land areas, higher proportions of irrigated land, and higher levels of non-

land wealth than would be found in a representative sample. Thus, my adaptation results are an

accurate representation of the behavior of this particular population, but my results may not hold

more broadly.

7 Robustness

In the supplementary file, I investigate the robustness of my results.

First, I re-run my adaptation regressions using a fixed effects specification that drops my in-

strumental variables strategy. In light of potential issues with my instruments, these results provide

another set of estimates, which may be of interest. In addition, using the non-IV specification al-

lows me to estimate a new set of standard errors that allow for spatial correlation. This is important

because, as indicated in Appendix B, my lagged rainfall variable demonstrates significant spatial

correlation. To implement these standard errors, I use code from Hsiang and Solow (2010) and

Fetzer (2014). Guided by the autocorrelograms in Appendix B, I allow for a correlation within 800

kilometers using a Bartlett (triangular) kernel. My results are robust to these changes.49

Second, I re-estimate my regressions using rainfall lag windows of 5 or 15 years, to verify that

the choice of a 10-year window is not driving my results. My district irrigation regressions and

my household crop regressions are robust to using alternate rainfall windows. In my household

irrigation regressions, however, the signs of the coefficients of interest are preserved but are no

longer statistically significant. I also present regressions in which I control for lagged rainfall

separately for each year (rather than as an average). In this case, the coefficients are no longer

individually statistically significant (likely because they are correlated with each other), but the set

of rainfall lags is jointly significant.

Third, I discuss the possibility that depletion of groundwater and/or surface water might be
49I do not implement spatially correlated standard errors in the specification presented in the paper because there is

not code available to run spatially correlated standard errors for a regression that has instrumental variables and fixed
effects.
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causing the relationship between irrigation investment and lagged rainfall that I have found. Using

irrigated area (rather than irrigation investment) as my dependent variable, I find that the area of

irrigated land increases after dry decades. As I discuss in greater detail in Appendix C.3, this test

provides some reassurance that water depletion is not driving my results, but it does not fully rule

out that possibility.

Fourth, I test whether my irrigation adaptation results might be due to public (government)

investments rather than private (farmer) investments. In India, the bulk of direct public irrigation

investments are large-scale dams.50 When I control for the presence of these dams, my irrigation

adaptation results are preserved. However, as I discuss in Appendix C.4, government irrigation

investment is an outcome variable and may be endogenous to the household investment decision.

For this reason, my results are suggestive that the adaptation results are not driven by public in-

vestment, but do not definitively rule out that possibility.

Fifth, I test whether changes in agricultural technology or policies might be confounding my

results. I add controls for high-yielding variety crops, electrification rates, fertilizer prices, fi-

nancial institutions, agricultural extension services, transportation infrastructure, and government

intervention in output markets. My irrigation and crop adaptation results are robust to adding these

controls. However, as discussed in Appendix C.5, these results are suggestive only, not definitive,

since I am only able to control for a subset of possible confounders. Furthermore, the confounders

that I do control for are potentially endogenous to the household irrigation and crop decisions.

Lastly, I re-run my regressions with region-by-year fixed effects. Due to the large-scale spatial

correlation of the monsoons, it is possible that unobserved, time-varying confounding factors might

be correlated with my lagged rainfall variables. Including region-by-year fixed effects is a flexible

way to control for this. My district irrigation results and my household crop results are robust

to the addition of these controls. In my household irrigation regressions, however, the signs of

the coefficients of interest are preserved but are no longer statistically significant. The lack of
50Although most direct government irrigation investment is via large-scale dams, the government does subsidize

groundwater irrigation through credit programs and electricity subsidies. Controlling for dams does not address these
channels. However, I do control for some of these policies in Appendix C.5.
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robustness of my irrigation results to this change in specification is a major limitation of my study.

The supplementary file provides more details on these tests.

8 Effectiveness of Adaptation

The preceding text has found evidence of adaptation; this section quantifies its efficacy. What

fraction of profits were farmers able to protect from adverse climate variations? To answer this

question, I use the household data set to estimate the extent to which irrigation adaptation increased

profits during 1971–1999.51 Rainfall during this period was below average (as shown in Figure 1),

and this reduced profits. On the other hand, my adaptation regressions indicate that farmers noticed

that rainfall was below average during this period and increased their investment in irrigation. This

investment in irrigation should have at least partially offset some of the losses due to the drier than

average climate. I seek to estimate how beneficial or effective this adaptation was.

To calculate the efficacy of adaptation, I do two things. First, I estimate the percentage of

profits that were lost due to the drier than average rainfall that occurred during 1971–1999. Next,

I estimate the percent of these losses that were recovered due to increased investment in irrigation.

To calculate these percentage changes requires that I estimate profits from three different scenarios:

actual profits, counterfactual profits under a scenario where the dry regime did not occur, and

counterfactual profits under a scenario where the dry regime occurred but farmers did not adapt. I

now describe in detail how I calculate these three quantities.

First, I estimate what the actual profits were for each farmer over the period from 1971–1999,

given the rainfall that actually occurred and the actual irrigation decisions of farmers. Since I only

have survey data for three points in time (1971, 1982, and 1999), in order to estimate the profits

in the intervening years, I use interpolation. I use the actual wealth and irrigation in each survey
51The analysis focuses on irrigation adaptation because the efficacy of crop adaptation is not calculable. Specifi-

cally, the data do not permit an unbiased estimate of the impact of crop portfolio on profits. Unobserved shocks, such
as health shocks, may be correlated with both profits and drought-tolerant crop areas, and hence a regression of profits
on drought-tolerant areas will be biased. For irrigation, in contrast, I can instrument for irrigated land with inherited
irrigated land and remove, or at least reduce, this bias.
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round and interpolate them, to have a predicted level of irrigation and wealth for each farmer for

every year between 1971 and 1999. Next, I combine these estimates with the actual rainfall that

occurred for each of these intermediate years. Then, I use the regression coefficients from Table 3,

column 2, to estimate the profits per acre for each farmer. I then sum these up over all the years

between 1971-1999 to have an estimate, for each farmer, of what his total profits were over this

period, given the actual rainfall that occurred and the actual wealth and irrigation that he had.

Second, I calculate what the profits would have been for each farmer over the period from

1971–1999 if the drier-than-average rainfall period had not occurred. In order to do this, I calculate

expected annual profits, using a 20% chance of each rainfall quintile occurring. This calculation

effectively projects what expected profits would have been if rainfall were at its historical mean

distribution. I interpolate irrigation and wealth for non-survey years for this counterfactual scenario

as well, and I again use the regression coefficients from Table 3, column 2. I then sum these up over

all the years between 1971 and 1999 to have an estimate, for each farmer, of what his expected

profits would have been had rainfall not been below average. I then compare these “expected

profits” to the actual profits computed above, in order to calculate what fraction of profits each

farmer lost due to the drier rainfall regime.

Lastly, I want to calculate what fraction of these theoretical “lost profits” farmers were able to

recover due to their increased investment in irrigation which, at least partially, offset these losses.

In order to do this, I want to look at the path of irrigation over the period from 1971–1999 and

determine what fraction of this irrigation investment was due to adaptation to lagged rainfall. I then

will subtract away this quantity of “adapted irrigation” in order to calculate what level of irrigation

each farmer would have had in the absence of adaptation. Then I will calculate the profits that

farmers would have had, if they experienced the drier than average rainfall and had this lower level

of irrigation that did not incorporate adaptation. This gives me a measure of counterfactual profits

under a scenario where the dry regime occurred but farmers did not adapt their irrigation.

To do this, I need to compute a counterfactual value of what the proportion of irrigated land

would have been for each farmer in the absence of adaptation. I use the coefficients from col-
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umn 2 of Table 7 to calculate the adaptive response of irrigation to lagged rainfall.52 This table

is analogous to my baseline irrigation adaptation specification (Table 4) but uses the proportion of

irrigated land as the dependent variable (rather than an irrigation investment dummy). The irriga-

tion investment dummy captures precisely how the household is adjusting its irrigation this year.

However, using it requires knowing what fraction of the farmer’s land becomes irrigated when

he invests in irrigation, since profits depend on the proportion of land irrigated. Thus, I instead

use the proportion of irrigation, which is a coarser measure of adaptation. This allows me to sub-

tract a quantity of “adapted irrigation” from the interpolated irrigation, to calculate what irrigation

would have been in the absence of adaptation. I combine this lower irrigation level with the actual

weather realizations and interpolated wealth and the profit regression coefficients to get an estimate

of counterfactual profits under a scenario where the dry regime occurred but farmers did not adapt

their irrigation.53

Using these profit measures, I find that on net the dry regime decreased farmers’ profits by

0.4%. However, there is substantial heterogeneity among households, and for households with

losses, the average loss was 3.1%. Furthermore, I estimate that farmers with profit losses recov-

ered only 9% of their losses on average. However, it is important to note that my coefficient

for adaptation in the alternate specification in Table 7 is estimated with less precision than my

preferred estimate in Table 3, and is only statistically significant at the 10% level. In order to coun-

terbalance this, I calculate a 95% confidence interval for that coefficient, and then estimate what

fraction of lost profits would have been recovered if the true adaptation coefficient was at the upper

or lower end of this range. I find that, at most, 19% of lost profits would have been recovered,

and potentially as little as zero. Altogether my estimates suggest that farmer adaptation to persis-

tent rainfall deviations appears to have had limited efficacy. This is suggestive that adaptation to

future anthropogenic climate change may be limited. However, extrapolating my results directly
52Note that I use the adaptation specification where I control for wealth. This ensures that all of the response that I

see for irrigation in response to lagged rainfall is due to the expectations and is not simply due to the wealth effect.
53A more straightforward calculation would be to compare actual profits over the period 1971–1999 based on actual

irrigation to profits for that same period if irrigation had remained at its 1971 levels. However, this would assume that
all of the growth in irrigation was due to responses to drier rainfall, whereas in fact a large part of it was likely due to
over all trends in irrigation that were driven by changes in technology, etc.
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to future climate change is problematic, since future climate change will affect both rainfall and

temperature.

In addition, as discussed above, due to sample selection, the farmers in my sample have, on

average, higher land areas, a higher fraction of irrigated land, and higher levels of non-land wealth

than would be found in a representative sample. Nevertheless, I argue that we would expect wealth-

ier households to be more likely to adapt to climate change than poorer households; so that if

anything, it means that the 9% that I estimate is actually an upper bound on the true fraction of

profits recovered via adaptation. And, hence, my study still provides useful, although more limited,

information.

9 Conclusion

To accurately predict future climate change damages requires an accurate understanding of the

ability of agents to adapt to changes in climate. In this paper, I exploit persistent rainfall varia-

tions in India over the past 50 years to test whether farmers adjust their irrigation and crop choice

decisions in response to recent rainfall. I find evidence of both irrigation adaptation and crop

adaptation. However, analysis suggests that the efficacy of adaptation is limited; I estimate that

adaptation recovers at most only 19% of lost profits and, more likely, only 9%.

There are several important caveats to my study. First, I look at adaptation to rainfall changes

only (not temperature). Second, I analyze only two possible adaptations, when in fact a much

broader array of adaptations are possible. Third, my instrumental variables strategy (instrumenting

for current wealth and irrigated land with inherited wealth and inherited irrigated land) most likely

reduces the endogeneity bias in my regressions but, to the extent that inheritances within a dynasty

are non-random, does not fully eliminate this bias. Fourth, data limitations prohibit me from fully

controlling for all potential confounding changes in agricultural technology or policies. When I try

to control for potential confounders flexibly (by including region-by-year fixed effects), my crop

adaptation results are preserved but my household irrigation results are not. Fifth, I am not able to
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completely rule out the possibility that depletion of water supplies could be driving my irrigation

adaptation results. Lastly, my household data set exhibits substantial, non-random attrition and, as

a result, the sample I analyze is wealthier, on average, than a representative sample would be. If we

expect wealthier farmers to adapt more readily than poorer farmers, this means that my adaptation

estimates may be an upper bound. However, since I find that the efficacy of adaptation is limited,

even for the households that I analyze, the results of my study are still of interest.

Despite these caveats, my results suggest that, in the context of the historical rainfall deviations

that I have analyzed, there are barriers to adaptation. My work does not elucidate the precise nature

of these barriers. Other work, summarized by Jack (2011), indicates that credit and information

constraints, as well as inefficiencies in input, output, land, labor, and risk markets, inhibit agricul-

tural adaptation in a variety of situations. The specific barriers to climate change adaptation and,

importantly, the institutions, technologies, and policies that might remove these barriers, call for

further exploration.
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Figure 1: Interdecadal Variability of the Indian Monsoon

Note: This figure displays the 31-year moving average of India’s summer monsoon rainfall, mea-
sured as a z-score deviation from the historical mean. Source: The rainfall data are from the India
Institute of Tropical Meteorology’s Homogeneous Indian Monthly Rainfall Data Set (1871–2008).
The figure is constructed based on the author’s calculations.
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(b) Central Northeast India
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(c) Northeast India
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(d) Northwest India
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(e) Peninsular India
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(f) West Central India

Figure 2: Spatial Variation of the Interdecadal Variability of the Indian Monsoon

Note: This figure graphs the 31-year moving average of the summer monsoon rainfall, measured
in millimeters for India’s five meteorological regions. The horizontal line represents mean rainfall
for that region. Source: The rainfall data are from the India Institute of Tropical Meteorology’s
Homogeneous Indian Monthly Rainfall Data Set (1871–2008). The figure is constructed based on
the author’s calculations.
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Figure 3: Annual Variability of the Indian Monsoon

Note: The y-axis graphs the All-India summer monsoon rainfall, expressed as a z-score deviation
from its historical mean. Source: The rainfall data are from the India Institute of Tropical Mete-
orology’s Indian Monthly Rainfall Data Set (1871–2008). The figure is constructed based on the
author’s calculations.
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Lagged Means 1971

(a) 1971

Lagged Means 1982

(b) 1982Lagged Means 1999

(c) 1999

Figure 4: Spatial Variation in Decadal Rainfall: REDS Survey Years

Note: The map displays average (z-score) summer rainfall for each district over the previous
decade. Blue represents higher rainfall, and red represents lower rainfall. Source: The rainfall
data are from the India Institute of Tropical Meteorology’s Homogeneous Indian Monthly Rainfall
Data Set (1871–2008). The figure is constructed based on the author’s calculations.
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Lagged Means 1956

(a) 1956

Lagged Means 1966

(b) 1966
Lagged Means 1976

(c) 1976

Lagged Means 1986

(d) 1986

Figure 5: Spatial Variation in Decadal Rainfall: WB Years

Note: The map displays average (z-score) summer rainfall for each district over the previous
decade. Blue represents higher rainfall, and red represents lower rainfall. Source: The rainfall
data are from the India Institute of Tropical Meteorology’s Homogeneous Indian Monthly Rainfall
Data Set (1871–2008). The figure is constructed based on the author’s calculations.
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Tables

Table 1: Summary Statistics

Household District
1971 1982 1999 1971 1956 1986

Panel A: Agricultural variables

Agricultural profits per acre (1971 Rs.) 502.96 586.6 741.7 - - -
(440.9) (654.9) (940.0)

Agricultural profits per acre, deducting
the value of family labor (1971 Rs.) - 375.3 425.3 - - -

(530.9) (819.2)
Agricultural revenue per acre - - - 4425.6 1439.5 15340.0

(2070.2) (637.3) (4796.9)
Proportion of land irrigated 0.378 0.414 0.483 0.234 0.178 0.321

(0.437) (0.455) (0.466) (0.203) (0.175) (0.256)
Irrigation investment during the recall 0.0767 0.0724 0.0116 - - -

period (dummy) (0.266) (0.259) (0.107)
Log non-land wealth (1971Rs.) 8.065 7.040 9.123 - - -

(1.081) (1.406) (1.228)
Proportion of inherited land irrigated 0.329 0.407 0.416

(0.380) (0.456) (0.468)
Log non-land inherited wealth (1971Rs.) 7.133 2.959 5.848 - - -

(0.962) (2.789) (3.690)
Average crop water need (centimeters) - 0.706 0.736 - - -

(0.224) (0.229)
Average crop water need (centimeters) - 0.754 0.820 - - -

(monsoon crops) (0.239) (0.249)

Panel B: Weather variables

Current year rainfall 0.313 0.208 0.279 0.436 0.579 -0.400
(0.929) (0.772) (0.723) (1.007) (0.883) (0.748)

Ten-year lagged average rainfall -0.000634 0.0653 -0.0303 0.000608 0.108 -0.0353
(0.328) (0.251) (0.326) (0.288) (0.294) (0.234)

Ten-year lagged average of dry shock 0.196 0.183 0.166 0.203 0.176 0.191
(0.125) (0.0925) (0.150) (0.122) (0.111) (0.106)

Ten-year lagged average of wet shock 0.177 0.220 0.167 0.185 0.224 0.163
(0.122) (0.130) (0.124) (0.106) (0.133) (0.115)

Note: The table displays mean coefficients, with standard deviations in parentheses. The household sample is
restricted to farmers who cultivate land. See Section 4 for details on how the variables are constructed.
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Table 2: Daily Water Requirements
of Common Crops Grown in India

Crop Daily Water Requirement
Barley 0.400
Cotton 0.525
Oilseeds 0.350
Maize 0.450
Millet 0.575
Peanut 0.525
Potato 0.750
Pulses 0.350
Rice 1.075
Sorghum 0.575
Soybean 0.525
Sugarcane 0.650
Wheat 0.425

Note: The daily water requirement
is measured in centimeters per day.
Source: Agriinfo.in (2015).
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Table 3: The Impacts of Irrigation and Rainfall on Profits

Data set: Household Household District
Specification: FE-IV FE-IV FE
Dependent variable: Profits per Acre Profit per Acre Revenue per Acre

(1) (2) (3)
Rainfall below 20th percentile (dummy) 10.67 -46.64 -471.6⇤⇤⇤

(136.2) (149.1) (122.7)
Rainfall between 20th and 40th percentiles 87.95 82.35 -272.1⇤⇤

(93.76) (101.6) (121.5)
Rainfall between 60th and 80th percentiles 154.7⇤ 89.57 108.0

(81.28) (87.40) (106.5)
Rainfall above 80th percentile 312.4⇤⇤⇤ 335.3⇤⇤⇤ 127.9

(82.46) (85.01) (114.3)
Proportion of irrigated land 364.1⇤⇤⇤ 430.2⇤⇤⇤ 3031.7⇤⇤⇤

(126.1) (141.5) (900.3)
Propirr*Rainfall below 20th percentile -226.0 -135.7 1001.0⇤⇤

(170.5) (189.1) (468.9)
Propirr*Rainfall between 20th and 40th percentiles -250.3 -186.9 721.5

(167.5) (173.6) (476.9)
Propirr*Rainfall between 60th and 80th percentiles -154.3 -84.58 -295.1

(139.1) (150.6) (390.1)
Propirr*Rainfall above 80th percentile -447.8⇤⇤ -462.8⇤⇤ -227.4

(198.5) (223.3) (397.6)
Temperature -15.16 -31.42 -174.2⇤⇤⇤

(32.44) (39.76) (46.58)
Log non-land wealth (1971 Rs.) 67.96 68.59

(58.62) (63.35)
Fixed effects Household Household District
Year fixed effects Yes Yes Yes
Observations 6828 6828 8384
First stage

F statistic (Proportion of irrigated land) 92.51 92.51
F statistic (Log non-land wealth) 19.96 19.96

Notes: Standard errors, in parentheses below the coefficients, allow for clustering within a latitude–longitude
grid point. Column 1 deducts the value of family labor from profits and column 2 does not. In columns 1
and 2, I instrument for the proportion of irrigated with the proportion of inherited land that was irrigated,
and I instrument for wealth with inherited wealth. The first-stage F-statistics are reported in the table. Full
first-stage regressions are also available from the author. F-test: The Staiger and Stock (1997) rule of thumb
is that instruments are “weak” if the first-stage F is less than 10, and the Stock and Yogo (2002) Weak ID test
critical value for 2SLS bias being less than 10% of OLS bias is 16.38. See Section 4 for details on how the
variables are constructed.
⇤

p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 5: Testing for Crop Adaptation

Data set: Household Household Household Household
Specification: FE-IV FE-IV FE-IV FE-IV

Crop Water Crop Water Crop Water Crop Water
Dependent variable: Need Need Need (Monsoon) Need (Monsoon)

(1) (2) (3) (4)
Ten-year lagged average rainfall 0.0269 0.0379

(0.0233) (0.0287)
Ten-year lagged average of dry shock -0.159⇤⇤⇤ -0.204⇤⇤⇤

(0.0478) (0.0675)
Ten-year lagged average of wet shock 0.0193 0.0834

(0.0454) (0.0572)
Current year rainfall 0.0145⇤⇤ 0.0159⇤⇤ 0.0145 0.0166⇤

(0.00715) (0.00686) (0.0103) (0.00981)
One year lagged rainfall -0.0160⇤⇤ -0.0186⇤⇤ -0.0163⇤ -0.0215⇤⇤

(0.00800) (0.00765) (0.00945) (0.00935)
Log non-land wealth (1971 Rs.) -0.00428 -0.00522 -0.00368 -0.00512

(0.0120) (0.0109) (0.0192) (0.0171)
Fixed effects Household Household Household Household
Year fixed effects Yes Yes Yes Yes
First stage

F statistic (Log non-land wealth) 69.22 71.49 66.94 69.38
Observations 5577 5577 5462 5462

Note: Standard errors, in parentheses below the coefficients, allow for clustering within a latitude-longitude
grid point. A dry shock is rainfall below the 20th percentile and a wet shock is rainfall above the 80th
percentile. In all columns, I instrument for wealth with inherited wealth. The first-stage F-statistics are
reported in the table. Full first-stage regressions are also available from the author. F-test: The Staiger and
Stock (1997) rule of thumb is that instruments are “weak” if the first-stage F is less than 10, and the Stock
and Yogo (2002) Weak ID test critical value for 2SLS bias being less than 10% of OLS bias is 16.38. See
Section 4 for details on how the variables are constructed. ⇤

p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 7: Testing for Irrigation Adaptation: Dependent Variable is the Proportion
of Irrigated Land

Data set: Household Household Household Household
Specification: FE FE-IV FE FE-IV

Proportion Proportion Proportion Proportion
Dependent variable: of Irrigated of Irrigated of Irrigated of Irrigated

Land Land Land Land
(1) (2) (3) (4)

Ten-year lagged average rainfall -0.0659⇤⇤ -0.0564⇤
(0.0325) (0.0330)

Ten-year lagged average of dry shock 0.0139 0.0144
(0.0735) (0.0756)

Ten-year lagged average of wet shock -0.102 -0.0570
(0.0675) (0.0708)

Current year rainfall -0.0202 -0.0184 -0.0220 -0.0200
(0.0131) (0.0137) (0.0134) (0.0140)

One year lagged rainfall -0.00852 -0.0132 -0.0110 -0.0161
(0.00983) (0.0106) (0.00940) (0.0103)

Log non-land wealth (1971 Rs.) 0.0736⇤⇤⇤ 0.0715⇤⇤⇤
(0.0162) (0.0163)

Fixed effects Household Household Household Household
Year fixed effects Yes Yes Yes Yes
First stage

F statistic (Log non-land wealth) 116.51 113.72
Observations 11856 11759 11856 11759

Notes: Standard errors, in parentheses below the coefficients, allow for clustering within a
latitude-longitude grid point. A dry shock is rainfall below the 20th percentile and a wet shock
is rainfall above the 80th percentile. In columns 2 and 4, I instrument for wealth with inherited
wealth. The first-stage F-statistics are reported in the table. Full first-stage regressions are
also available from the author. F-test: The Staiger and Stock (1997) rule of thumb is that
instruments are “weak” if the first-stage F is less than 10, and the Stock and Yogo (2002) Weak
ID test critical value for 2SLS bias being less than 10% of OLS bias is 16.38. See Section 4 for
details on how the variables are constructed.
⇤

p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Adaptation to Climate Change: Historical Evidence

from the Indian Monsoon (Supplementary File)

Vis Taraz

July 27, 2016

A Study Area and Attrition Issues

Figure 1 shows the districts that are included in the World Bank data set and Figure 2 shows the

locations of the villages that are included in the REDS data set.

In my analysis of the REDS data set, I restrict my analysis to households that were interviewed

in at least two of the survey rounds. I now discuss potential sample selection issues that arise due

to attrition. First, it is important to note that if households split into multiple households between

survey rounds, the split-off households are included in the sample and therefore not dropped from

the sample. Consequently, the only cause of attrition is if a household could not be located in the

follow-up survey round or if a household refused to participate in the follow-up round of the survey.

Because of the long time periods between the different rounds (1971, 1982, and 1999), attrition is

fairly high. Of the 1971 households, 69% were located and participated in the 1982 survey round

(Vashishtha, 1989). Of the 1982 households, 77% were located and participated in the 1999 survey

round (Deininger et al., 2009b). The survey design attempts to partially address this attrition by

adding an equal number of randomly selected households from the same village to balance out

any households that could not be located in the follow-up survey round. These randomly selected

households are stratified by wealth categories, in order to better match the characteristics of the

1



attrited households (Deininger et al., 2009a). Although households added this way in 1999 are not

included in my sample (because they were only interviewed during a single round), households

that were added in 1982 are included in my sample if they were interviewed again in 1999.

Earlier work has found that attrition appears to be random relative to many household de-

mographic characteristics. Specifically, one cannot reject the hypothesis that the demographic

attributes of caste, household size, number of earners, age of the household head, and education of

the household head are the same amongst attriting and non-attriting households (Deininger et al.,

2009a,b; Jha et al., 2013; Jha, 2013). Unfortunately, earlier work has found that attrition is non-

random relative to land size. Specifically, landless households are more likely to attrite (Deininger

et al., 2009b). Furthermore, comparing attriting to non-attriting households (for both the 1971 and

1982 rounds), I find that non-attriting households had statistically significantly higher land areas,

higher fractions of irrigated land, and higher levels of non-land wealth. Therefore, the sample that

I analyze is not nationally representative of the Indian population as a whole. For this reason, my

results are an accurate representation of the behavior of the population that my sample represents,

but are not necessarily an accurate characterization of all farmers in India. Nevertheless, as I argue

in Section 8 of the main paper, I believe that my core results are still of interest. Specifically, when

I analyze adaptation, I find that adaptation appears to recapture a relatively small fraction of the

profits that are lost due to sustained adverse climate (at most, 19% of profits; most likely only 9%).

If we believe that wealthier farmers are more likely to adapt than poorer farmers (and have less

barriers to adaptation), then this would suggest that my estimate is actually an upper bound on the

efficacy of adaptation and, hence, still of interest.

B Rainfall Variation

In this section, I provide a more detailed discussion of the variation in my key lagged rainfall

variables. The basic means and standard deviations of my lagged rainfall measures, for relevant

years of each survey, are given in the main text in panel B of Table 1. In Appendix Table 1, I present

2



a more detailed summary of statistics for the decadal lagged z-score rainfall measure, specifically

showing its percentile distribution.1

Appendix Table 1, however, only captures the temporal variation in decadal rainfall and does

not capture any of the spatial variation. To demonstrate the spatial variation of lagged rainfall, I

use maps. Figures 4 and 5 in the main text show the spatial variation in decadal lagged average

rainfall—for each round of REDS survey and each decade of the WB survey. To complement

these maps, Appendix Figures 3 and 4 present district maps of the number of lagged dry shocks in

the past decade, for representative years of the REDS and WB data sets. Recall that a dry shock

is defined as a year that is below the historical 20th percentile of rainfall for that district.2 On

the maps, the districts shaded in the lightest color of pink had no dry shocks in the past decade,

whereas the districts shaded in the darkest red had five or more dry shocks in the past decade.3

Focusing on the maps for the REDS survey years, we can see that there is variation in the number

of dry shocks in the past decade, with a substantial number of districts having no dry shocks in

the past decade and, conversely, a substantial number having five dry shocks or more in the past

decade.

These maps provide a qualitative description of the spatial variation in lagged rainfall, but do

not capture these spatial variation in a precise, quantitative manner. To explore the spatial variations

of lagged rainfall in a complementary, more rigorous way, I construct graphs that display the spatial

autocorrelation of lagged decadal average rainfall. Specifically, I calculate Moran’s I, a measure

of spatial autocorrelation, which is given by the following formula:

I =
N

SiSjwij

SiSjwij(Xi � ¯X)(Xj � ¯X)

Si(Xi � ¯X)2

,

where N is the number of spatial units indexed by i and j, X is the variable of interest; ¯X is
1Note: the means for the REDS data are slightly different here than in Table 1 in the main paper, because the main

paper Table takes the household as the unit of observation whereas the Appendix Table uses the village as the unit of
observation.

2I use the entire range of the rainfall data (1900–2008) to construct the percentiles.
3For concision, I do not present the corresponding maps with the number of lagged wet shocks, but they are

available upon request.
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the mean of X, and wij is an element of a matrix of spatial weights (Moran, 1950). The value of I

ranges from –1 to 1, where negative values indicate negative spatial autocorrelation, positive values

indicate positive spatial autocorrelation, and a zero value indicates a random spatial pattern. Due to

the large-scale nature of the monsoon decadal variations, I expect to see a positive autocorrelation

of lagged decadal average rainfall. Calculating Moran’s I allows me to measure the magnitude of

this autocorrelation, and also to see how much it decays with distance.

Figures 5 and 6 plot the autocorrelation coefficient as a function of distance between pairs of

observations, for each year of the REDS survey, and for representative years from the WB data,

respectively.4 The graphs were created in Stata using the “spatcorr” command (Pisati, 2012).

The spatial correlation coefficient weights each pair of points as an inverse linear function of the

distance between the two points. The graphs indicate that spatial autocorrelation is very high for

points that are within 200 kilometers of each other (ranging from 0.5 correlation to 0.95 correlation,

depending on the year). However, the autocorrelation decays roughly linearly as a function of

distance, reaching a correlation of close to zero once the distance between two points is roughly

600 or 800 kilometers (again, depending on the year). I use this information about the spatial

autocorrelation to guide my analysis in Appendix C.1, where I test the robustness of my results to

the use of standard errors that allow for spatial correlation. In AppendixC.1 , I use an 800-kilometer

radius for the potential spatial correlation and allow it to decay at a linear rate, in accordance with

the pattern of spatial correlation that the Moran’s I graphs have indicated. The results of this

exercise are discussed in Appendix C.1.

C Robustness

In this section, I investigate the robustness of my results to several changes in the regression spec-

ification.
4For the REDS data set, I use each village in the data set as the unit of analysis for constructing Moran’s I. For the

WB data set, I use each district in the data set as the unit of analysis for constructing Moran’s I.
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C.1 Non-IV Specification and Spatially Correlated Standard Errors

I first re-run my adaptation regressions using a fixed effects specification, in which I do not instru-

ment for household wealth. I report this specification with two sets of standard errors. The first

set of standard errors is clustered at the rainfall grid point level, in keeping with the specifications

in the main paper. The second set of standard errors allow for spatial correlation. I present these

specifications for two reasons. First, because there are some potential issues with my instrumental

variables strategy, running the regression without the IV may be informative for comparative pur-

poses. Second, as discussed in Section B my lagged rainfall measure exhibits substantial spatial

correlation. Therefore, it is important to make sure that my results are robust to a specification that

allows for this spatial correlation. To implement these standard errors, I use code from Hsiang and

Solow (2010) and Fetzer (2014). Guided by the autocorrelograms in Section B, I allow for a spa-

tial correlation within 800 kilometers with a Bartlett (triangular) kernel and temporal correlation

within a 30-year window. I do not implement spatially correlated standard errors in the specifi-

cations presented in the main paper because I was not able to find Stata code that could calculate

spatially correlated standard errors for a regression using instrumental variables and fixed effects.

I present the results of these specifications in Appendix Tables 2 and 3, which are the ana-

logues of Tables 4 and 5 from the main text. The tables present the fixed effects specification in all

columns. Cluster robust standard errors are presented below the coefficient estimates in parenthe-

ses, and spatially correlated standard errors are presented below that in brackets.

There are several important things to note. First, in comparing the fixed effects regressions to

the IV fixed effects regressions from the main paper, we see that the coefficients on wealth change

substantially. This indicates that wealth is indeed likely to be endogenous in theses regressions.

However, the coefficients of interest on lagged rainfall are essentially unchanged across the IV and

the non-IV specifications. This suggests that the endogeneity of wealth may not be affecting my

estimates of adaptation.

Next, I compare the cluster robust standard errors to the errors that allow for spatial correlation.

In all cases, the coefficients of interest that are statistically significant in the regressions from
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the main paper are still significant with the new set of standard errors. Looking at the district

irrigation regression results in columns 5 and 6 of Appendix Table 2, we see that the standard errors

increase by 15% to 50% but the coefficients on lagged rainfall are still statistically significant. This

demonstrates that there is non-negligible spatial correlation in the errors for my district regressions,

but that my results are robust to allowing for this spatial correlation.

Interestingly, for the household irrigation and crop regressions, the standard errors change very

little when I allow for spatial correlation and, in some cases, become slightly smaller. As discussed

in Cameron and Miller (2015), situations in which clustered errors are smaller are typically either

due to negatively correlated standard errors or, more frequently, simply due to noise. I believe the

latter is more likely to be the case for my data. The small change in the standard errors demonstrates

that there is not substantial correlation in the standard errors of my household regressions. This

suggests that there may be substantially more idiosyncratic variability from household to household

in the REDS data set (compared to the districts in the WB data set), and this may be why the

standard errors change so little.

C.2 Sensitivity to Rainfall Specification

My baseline regressions use average rainfall from the past decade as an approximation of the cur-

rent monsoon regime. I now verify that the choice of a 10-year rainfall window is not driving

my results. First, I explore a specification where I control individually for rainfall from each year

from the past decade (rather than using the decadal average). I do this to test if farmers give

greater weight to more recent rainfall when making their irrigation and crop decisions. The results,

presented in Appendix Table 4, are inconclusive. Very few of the individual rainfall lags are (indi-

vidually) statistically significant. Furthermore, there is no discernible pattern in the magnitudes of

the coefficients, probably due to the lack of precision with which the coefficients are estimated. It

is likely that the single-year rainfall lags are not individually significant because they are collinear

with each other—due precisely to the persistent nature of the monsoon decadal variation. However,

in all columns except column 2, the lags from years 2 to 10 are jointly significant at the 5% level
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or higher .

Next, I reestimate my adaptation regressions using rainfall lag windows of 5 and 15 years.

Appendix Table 5 presents the irrigation results for both data sets. The district irrigation results

are robust to this change in specification. In household irrigation regressions, the coefficient signs

are unchanged but the coefficients (in three out of four columns) are no longer statistically signif-

icant.5 Appendix Table 6 presents the household crop adaptation regressions with five and fifteen

year rainfall lag windows. For the specifications that use average decadal rainfall, the signs of the

coefficients are unchanged, but the coefficients are no longer statistically significant. For the spec-

ifications that use the wet/dry shock measure, however, the results remain statistically significant.

Taken as a whole, I interpret that Appendix Tables 5 and 6 demonstrate that my household irriga-

tion results are not robust to the use of alternate rainfall windows, but that my district irrigation

results and my crop results are robust to this change.

C.3 Depletion of Groundwater and Surface Water Supplies

Thus far, I have interpreted the response of irrigation investments to lagged rainfall as evidence

of adaptation. However, other mechanisms are possible. For example, suppose that a dry decade

reduces groundwater and/or surface water availability. Lower groundwater levels could induce

farmers to deepen their existing wells or perhaps switch to an investment in surface water irrigation.

Conversely, a decrease in surface water resources might prompt farmers to invest in wells.

In an attempt to address this concern, I adjust my regressions to use irrigated area, rather than

irrigation investment per se, as the dependent variable. The dependent variable in my baseline

district irrigation regressions is already the log of the 1-year change in irrigated area (see columns

5 and 6 of Table 4 in the main text). We would expect diminished groundwater (or surface water)

supplies to reduce, not increase, the irrigated area, so this regression specification would seem to

rule out a water depletion story, and hence I do not modify it. For my household data, my core
5For concision, I do not report columns for the household irrigation adaptation regressions that control for wealth,

but the results are comparable to those shown here.
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specification uses irrigation investment over the recall period as the dependent variable. I like

this measure because it captures precisely how the household is adjusting its irrigation each year.

Nevertheless, in Table 7 in the main text, I present an alternate specification with the proportion

of irrigated land as the dependent variable.6 The results are consistent with my baseline results,

although the coefficients are estimated with less precision. Specifically, the proportion of irrigated

land increases after drier decades. Note that the proportion of irrigation land is a coarser measure

of adaptation, since it is a stock measure that is the sum of all irrigation investments made to

date. In contrast, irrigation investment (from the past year) is a flow variable and one which we

would expect to respond more readily to recent rainfall. This distinction may cause the reduction

in precision of the coefficients in this table.

However, it is important to note that the strategy of using irrigated area as the dependent vari-

able does not fully rule out the possibility that water depletion is driving my results. For example,

depletion of surface water supplies might prompt a farmer to switch to an investment in a well, and

this newly dug well might allow the farmer to irrigate a larger area than before. Unfortunately, due

to data limitations, I am not able to fully rule out this possible mechanism.

C.4 Government Investment in Irrigation

In India, private entities (farmers) and public entities (the government) both invest in irrigation.

I now test whether government investment, rather than farmer investment, might be driving my

results. In India, most direct investment in groundwater irrigation is private, whereas most surface

water investments are public (Shah, 1993). The bulk of the government’s investments are large

dams (Thakkar, 1999; Vaidyanathan, 2010).7 Hence, large dams are a good measure of the gov-

ernment’s direct irrigation investment.8 I use data from the World Registry of Large Dams, which
6Since the gaps between household survey rounds last 10 years or more, I am unable to analyze 1-year changes in

irrigation.
7A large dam is defined as a dam that has a height of 15 meters from the foundation or a reservoir capacity of

more than 3 million cubic meters (Thakkar, 1999, p. 103).
8Although most of the government’s direct irrigation investment is via large-scale dams, the government does

subsidize groundwater irrigation through credit programs and electricity subsidies. Controlling for dams does not rule
out this mechanism. The government also subsidizes electricity, which is a complement to groundwater irrigation. I
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lists all large dams in India, by district and year.9 Dams provide surface water supplies to down-

stream districts, so I control for the number of upstream dams as my measure the government’s

irrigation investment. The results, shown in Appendix Table 7, are consistent with my baseline

results, suggesting that my baseline results are not solely driven by public irrigation investments.

However, it is important to note that the government’s irrigation investment is an outcome variable

and may be endogenous to the household investment decision. For this reason, this regressions

must be seen as suggestive or descriptive, but not conclusive.

C.5 Changes in Agricultural Technology and Policies

Next, I explore whether changes in agricultural technology or policies might be confounding my

results. A major change in technology during this period was the Green Revolution, which intro-

duced high-yielding varieties (HYVs) of rice and wheat. Irrigation and HYVs are complements

(McKinsey and Evenson, 1999), so controlling for their availability is important. Furthermore,

HYV seeds are better suited to certain agro-climatic zones, causing regional variation in Green

Revolution impacts (Evenson, 2003) that will not be captured by my year fixed effects. In addi-

tion, the government subsidizes many agricultural inputs, offers extension services, and intervenes

in output prices (Gulati, 1989; Fan et al., 2000, 2008). Many of these policies are implemented

at the state level and will not be controlled for by year fixed effects(Fan et al., 2000, 2008; Birner

et al., 2011). Therefore, I explore controlling for agricultural technology and policies directly.

With the district data, I control for electrification rates, fertilizer prices, and HYV suitability. I

measure electrification rates as the percentage of electrified villages in each state, using data from

Rud (2012). I draw the prices of nitrogen, phosphorus and potassium fertilizers from Sanghi et al.

(1998).10 To control for HYV suitability, I use Foster and Rosenzweig (2003)’s strategy by ex-

discuss electricity subsidies in the next section.
9The World Registry of Large Dams is analyzed by Pande and Duflo (2007). The data is publicly available at

http://hdl.handle.net/1902.1/IOJHHXOOLZ (Duflo and Pande, 2006).
10Fertilizer prices are plausibly exogenous because they are determined at the national level; the only cross-

sectional price variation arises from the cost of transportation from the railhead to the field (Sanghi et al., 1998).
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ploiting variation in the timing of wheat and rice yield advances.11,12 I proxy for HYV suitability

with the proportions of wheat and rice planted in the first year of the survey, interacted with year

dummies. This captures which districts were initially more likely to plant HYVs, and which dis-

tricts became more likely to do so as the technology progressed. HYV seeds were also specifically

promoted in some districts as part of the Intensive Agricultural District Program (IADP).13 I in-

clude an IADP dummy, interacted with the year dummies, to capture the higher HYV usage in

these districts and the evolution of this usage over time.

Columns 3 and 4 in Appendix Table 8 present the district irrigation results, using the wet/dry

rainfall shocks specification. Column 3 controls for fertilizer prices and HYV suitability, with data

spanning from 1956 to 1986. In column 4, I add the electrification control, which truncates the

panel to 1965–1984. The results are robust to the addition of these controls.14

I include a broader array of controls for the household data. For the regressions that use all three

of the survey rounds, I control for village financial institutions (credit cooperatives, moneylenders,

and/or banks), the presence of agricultural extension services, and a dummy for whether the village

is electrified. I also use the HYV suitability measures discussed above. In the regressions that use

only the last two survey rounds, I control for village-level measures of transportation infrastructure,

government intervention in output markets, government irrigation assets and subsidies, and the

proportion of groundwater versus surface water irrigation.15 I include the last control because

surface water is more likely to be publicly funded.

Columns 1, 2, 5, and 6 of Appendix Table 8 present the household results. The household
11I use HYV suitability, rather than the area planted with HYVs because the HYV area is endogenous.
12Specifically, advances in wheat seeds preceded those for rice seeds and the agro-climatic suitability for growing

rice versus wheat varies across districts.
13The IADP was initiated in the late 1960s in one district in each Indian state to diffuse technical know-how, credit

and agricultural technology to accelerate the adoption of the HYVs.
14For concision, I do not report results using the average rainfall regression specification, but the results are con-

sistent with those results presented.
15I measure transportation infrastructure as the distance to the nearest blacktop road, the nearest bus stand, and the

nearest railroad station, as well as dummies for whether the roads to the bus stand and railroad station are blacktop
roads. Government intervention in output markets is a dummy for whether or not most of the village’s produce is sold
to government agencies. Government irrigation assets and subsidies are the number of government irrigation sources
(defined as the total number of government-owned tanks, wells, pumps and other irrigation assets) and as a dummy
for the presence of public irrigation subsidies or loans.
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results are robust to the addition of these controls.16

There are two important limitations of this robustness exercise. First, due to data limitations, I

only control for a subset of the technology and policy changes that might influence the decisions

of farmers. Second, the additional controls are all potentially endogenous to the irrigation and

crop choice decisions of the farmers. Therefore, the results must be interpreted as suggestive

and descriptive only. It appears that changes in policies and technology are not the mechanisms

through which rainfall shocks affect irrigation and crop choice, but I cannot definitively rule out

that possibility.

C.6 Controls for Region-by-Year Fixed Effects

In a final robustness exercise, I attempt to control for possible confounding factors more flexibly.

The large-scale spatial correlation of the decadal shifts of the monsoon raises the concern that my

baseline results could be induced by confounding factors. For example, irrigation investment may

increase in a certain region of the country following a decade with below-average rainfall. But

perhaps that same region instituted a policy that made irrigation investment more attractive. In this

case, this policy itself might have been what drove the increase in irrigation, and my adaptation

result would be a spurious correlation.

Previously, I attempted to address this problem by controlling for some specific changes in

agricultural policies and technology to verify that these changes were not driving my results. Now,

in an attempt to control for unobserved confounders more flexibly, I add region-by-year fixed

effects to my regressions.17 This allows me to control for any time-varying unobservables that are

common to a given region. These results are shown in Appendix Tables 9 and 10.

For the irrigation tables, the REDS regressions are no longer significant, although the signs

of the coefficients are preserved. The district irrigation regressions are still significant. For the

crop adaptation regressions, the coefficients are still significant; in fact, the results are stronger.
16For concision, I do not report specifications that use the average rainfall regression specification, but the results

are consistent with those presented.
17I use the six meteorological regions of India.

11



Specifically, in the baseline specification, only the dry shocks are significant; however, once I add

region-by-year fixed effects, the lagged z-score columns are also significant.

In addition, I estimate versions of the adaptation regressions that include state-by-year fixed

effects. This allows me to control for any time-varying unobservables that are common to a given

state.18 With these added controls, neither the household nor the district irrigation regressions are

statistically significant, although the signs of the coefficients on lagged rainfall are preserved. My

crop regressions, however, are robust to these controls, and the coefficients remain statistically

significant at the 1% level in 3 out of the 4 columns.

Taken together, these results indicate that my crop choice regressions are substantially more

robust to controlling for unobserved confounders than my irrigation results. The lack of robustness

of my irrigation results to the region-by-year and state-by-year controls is a major limitation of my

study.

18For concision, these tables are not reported, but they are available from the author upon request.
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Figure 1: Districts Included in the World Bank Dataset

Note: The districts included in the World Bank data set are shaded gray.
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Figure 2: Villages Included in the Household Dataset

Note: The points on the map show the locations of the villages included in the REDS data set.
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Figure 3: Spatial Variation in Decadal Dry Rainfall Shocks: REDS Survey Years

Note: A dry shock is defined as a year that is below the historical 20th percentile of rainfall for that
district. The districts shaded in the lightest color of pink had no dry shocks in the past, whereas the
districts shaded in the darkest red had five or more dry shocks in the past decade. The years shown
correspond to the survey years of the REDS dataset.
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Figure 4: Spatial Variation in Decadal Dry Rainfall Shocks: WB Years

Note: A dry shock is defined as a year that is below the historical 20th percentile of rainfall for that
district. The districts shaded in the lightest color of pink had no dry shocks in the past, whereas the
districts shaded in the darkest red had five or more dry shocks in the past decade. The years shown
correspond to the time range of the WB dataset.
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(a) 1971 (b) 1982

(c) 1999

Figure 5: Spatial Correlation of Lagged Rainfall: Moran’s I for the REDS Survey Years

Note: These graphs plot the autocorrelation coefficient (Moran’s I) as a function of distance be-
tween coefficient as a function of distance between pairs of observations, for each year of the REDS
survey, using weights that are a linear function of distance. The graphs were created in Stata using
the ”spatcorr” command (Pisati, 2012). Refer to the text for more details about Moran’s I.
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(a) 1956 (b) 1966

(c) 1976 (d) 1986

Figure 6: Spatial Correlation of Lagged Rainfall: Moran’s I for WB Dataset Years

Note: These graphs plot the autocorrelation coefficient (Moran’s I) as a function of distance be-
tween coefficient as a function of distance between pairs of observations, for representative years
from the WB data, using weights that are a linear function of distance. The graphs were created in
Stata using the ”spatcorr” command (Pisati, 2012). Refer to the text for more details about Moran’s
I.
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Table 1: Detailed Summary Statistics for Lagged Rainfall

Year Mean Std. Dev. 10th 25th 50th 75th 90th
percentile percentile percentile percentile percentile

1971 -0.037 0.292 -0.389 -0.240 -0.090 0.191 0.360
1982 0.088 0.273 -0.312 -0.068 0.100 0.294 0.396
1999 0.055 0.331 -0.407 -0.194 0.089 0.345 0.458
1956 0.108 0.294 -0.292 -0.105 0.105 0.315 0.484
1966 0.128 0.340 -0.301 -0.098 0.093 0.335 0.576
1976 0.026 0.262 -0.298 -0.162 0.018 0.229 0.375
1986 -0.035 0.234 -0.322 -0.182 -0.044 0.136 0.242

Note: The table displays summary statistics for lagged average z-score rainfall from
the previous decade for each year of the REDS data set (consisting of 259 villages),
and for four different points of the WB data set (consisting of 271 districts).
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Table 3: Testing for Crop Adaptation, FE and FE with Spatial Standard Errors

Data set: Household Household Household Household
Specification: FE FE FE FE

Crop Water Crop Water Crop Water Crop Water
Dependent variable: Need Need Need (Monsoon) Need (Monsoon)

(1) (2) (3) (4)
Ten-year lagged average rainfall 0.0267 0.0374

(0.0235) (0.0289)
[0.0232] [0.0318]

Ten-year lagged average of dry shock -0.160 -0.206
(0.0475) (0.0661)
[0.0276] [0.0569]

Ten-year lagged average of wet shock 0.0175 0.0781
(0.0449) (0.0570)
[0.0418] [0.0658]

Current year rainfall 0.0140 0.0156 0.0132 0.0156
(0.00698) (0.00673) (0.00965) (0.00927)
[0.00512] [0.00475] [0.00813] [0.00808]

L1gz -0.0157 -0.0183 -0.0155 -0.0208
(0.00809) (0.00763) (0.00946) (0.00919)
[0.00480] [0.00415] [0.00655] [0.00664]

Log non-land wealth (1971 Rs.) -0.00687 -0.00698 -0.0107 -0.0104
(0.00289) (0.00278) (0.00369) (0.00341)
[0.00242] [0.00198] [0.00327] [0.00250]

Fixed effects Household Household Household Household
Year fixed effects Yes Yes Yes Yes
Observations 6389 6389 6305 6305

Note: Standard errors, in parentheses below the coefficients, allow for clustering within a latitude-longitude
grid point. A dry shock is rainfall below the 20th percentile and a wet shock is rainfall above the 80th
percentile. See Section 4 for details on how the variables are constructed.
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Table 4: Irrigation And Crop Adaptation, Individual Rain Lags, Z-scores

Data set: Household Household District Household Household
Specification: FE-IV FE-IV FE FE-IV FE-IV

Irrigation Irrigation Log of the Crop Water Crop Water
Dependent variable: Investment Investment One-Year Need Need (Monsoon)

(Dummy) (Dummy) Change of
Irrigated Area

(1) (2) (3) (4) (5)
Current year rainfall 0.00633 0.00858 0.00280⇤⇤⇤ 0.0146 0.0103

(0.00755) (0.00736) (0.000896) (0.00961) (0.0135)
One-year lagged rainfall -0.00476 -0.00856 -0.000791 -0.0222⇤⇤⇤ -0.0203⇤

(0.00610) (0.00671) (0.000961) (0.00745) (0.0111)
Two-year lagged rainfall 0.00216 0.00378 -0.000185 0.00556 0.0161

(0.00796) (0.00769) (0.000655) (0.00868) (0.0112)
Three-year lagged rainfall -0.0138⇤ -0.0124 -0.00114 0.0135 0.0288⇤⇤

(0.00780) (0.00820) (0.000769) (0.00895) (0.0112)
Four-year lagged rainfall 0.000822 0.00378 -0.00214 -0.0000231 0.000670

(0.00697) (0.00740) (0.00154) (0.00666) (0.00865)
Five-year lagged rainfall -0.0119 -0.0136⇤ 0.00117⇤ -0.000194 0.000969

(0.00749) (0.00781) (0.000623) (0.00769) (0.0107)
Six-year lagged rainfall 0.0147 0.00789 0.0000650 -0.00298 -0.00574

(0.00932) (0.00924) (0.000822) (0.00924) (0.0105)
Seven-year lagged rainfall -0.0110 -0.00801 0.000585 0.0263⇤⇤⇤ 0.0188

(0.00833) (0.00877) (0.000824) (0.00915) (0.0127)
Eight-year lagged rainfall -0.00995 -0.00790 -0.00231 0.0103 0.0249⇤⇤⇤

(0.00944) (0.00971) (0.00170) (0.00655) (0.00930)
Nine-year lagged rainfall -0.00486 -0.00821 -0.00141⇤⇤ -0.00875 -0.0120

(0.00774) (0.00773) (0.000561) (0.00743) (0.00963)
Ten-year lagged rainfall -0.00266 0.00218 -0.00101 -0.00534 -0.00161

(0.00796) (0.00803) (0.000719) (0.00531) (0.00671)
Eleven-year lagged rainfall 0.00659 0.00791 0.000680 0.000137 0.00607

(0.00510) (0.00550) (0.000827) (0.00457) (0.00533)
Twelve-year lagged rainfall 0.0143⇤⇤ 0.00985 0.000951 0.00337 -0.00274

(0.00657) (0.00705) (0.000613) (0.00675) (0.00853)
Thirteen-year lagged rainfall -0.00262 -0.00240 -0.000214 -0.0164⇤⇤ -0.0182⇤

(0.00577) (0.00603) (0.000726) (0.00811) (0.00972)
Fourteen-year lagged rainfall -0.00376 -0.00355 0.000955 0.00399 0.00742

(0.00593) (0.00611) (0.000741) (0.00595) (0.00803)
Fifthteen-year lagged rainfall -0.0160⇤⇤⇤ -0.0255⇤⇤⇤ -0.000824 -0.0187⇤⇤ -0.0251⇤⇤

(0.00587) (0.00634) (0.000914) (0.00861) (0.00989)
Log non-land wealth (1971 Rs.) 0.0483⇤⇤⇤ 0.000876 0.00674

(0.0128) (0.0134) (0.0198)
Fixed effects Household Household District Household Household
Year fixed effects Yes Yes Yes Yes Yes
Observations 12003 11759 8130 5577 5462

Notes: Standard errors, in parentheses below the coefficients, allow for clustering within a latitude–longitude
grid point. In columns 1, 2, 4 and 5, I instrument for wealth with inherited wealth. See Section 4 in the main
text for details on how the variables are constructed. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 10: Testing for Crop Adaptation, Region*Year FE

Data set: Household Household Household Household
Specification: FE-IV FE-IV FE-IV FE-IV

Crop Water Crop Water Crop Water Crop Water
Dependent variable: Need Need Need (Monsoon) Need (Monsoon)

(1) (2) (3) (4)
Ten-year lagged average rainfall 0.0450⇤ 0.0783⇤⇤

(0.0237) (0.0314)
Ten-year lagged average of dry shock -0.199⇤⇤⇤ -0.244⇤⇤⇤

(0.0499) (0.0655)
Ten-year lagged average of wet shock 0.0288 0.132⇤⇤

(0.0436) (0.0546)
Current year rainfall 0.0183⇤⇤ 0.0238⇤⇤⇤ 0.0198⇤ 0.0259⇤⇤

(0.00791) (0.00764) (0.0118) (0.0114)
L1gz -0.0136⇤ -0.0143⇤⇤ -0.0141 -0.0170⇤

(0.00789) (0.00702) (0.0104) (0.00986)
Log non-land wealth (1971 Rs.) 0.00489 0.00387 0.0158 0.0158

(0.0128) (0.0120) (0.0195) (0.0179)
Fixed effects Household Household Household Household
Region-year fixed effects Yes Yes Yes Yes
Observations 5577 5577 5462 5462

Note: Standard errors, in parentheses below the coefficients, allow for clustering within a latitude-longitude
grid point. A dry shock is rainfall below the 20th percentile and a wet shock is rainfall above the 80th
percentile. In all columns, I instrument for wealth with inherited wealth. See Section 4 in the main text for
details on how the variables are constructed. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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D Statistical Test of the Non-Stationarity of the Indian Mon-

soon

There is a consensus among meteorologists that the Indian monsoon undergoes multi-decadal wet

and dry regimes (Mooley and Parthasarathy, 1984; Parthasarathy et al., 1991; Subbaramayya and

Naidu, 1992; Pant and Kumar, 1997; Kripalani and Kulkarni, 1997; Naidu et al., 1999; Torrence

and Webster, 1999; Pant, 2003; Varikoden and Babu, 2014). There are a few meteorological papers

that demonstrate that these monsoon regimes generate statistically significant variation in rainfall.

Mooley and Parthasarathy (1984) find evidence of statistically significant rainfall via several dif-

ferent statistical analyses: a Cramer’s t-test, a low pass binomial filter, and residual mass curve

analysis. Kripalani and Kulkarni (1997) use a Cramer’s t-test to demonstrate the statistical signif-

icance of the regimes. Specifically, they apply this test to the 11-year running means of India’s

summer rainfall. The test indicates that there are statistically significant persistent deviations of

this running mean from the historical mean. This provides evidence that the summer rainfall does

not follow an i.i.d. process, but rather does demonstrate epochal behavior. Kripalani and Kulkarni

(1997) also analyze the statistical significance of the relationship between the monsoon regimes

and the El Niño Southern Oscillation.

In this appendix, I run an additional test that verifies the statistical significance of the monsoon

regimes. Specifically, I compute a quasi-likelihood ratio statistic for a mixture model to test the

null hypothesis of one regime versus the alternative of two regimes in a Markov regime-switching

context, following the approach developed by Cho and White (2007). The distribution of the test

statistic is nonstandard due to nuisance parameters that only exist under the alternative hypothesis;

however I am able to use the critical values tabulated in Steigerwald and Carter (2011) for this

purpose. I calculate the test statistic to be 9.61, which is greater than the tabulated 5% critical

value of 5.54, and therefore I reject the null hypothesis of a single rainfall regime. This suggests

that, in this context, farmer adaptation to recent rainfall can be interpreted as a rational response to

persistent rainfall variations that are greater than what would be expected under i.i.d. rainfall.
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E Proof of Signs of Partial Derivatives

In order to have the desired signs for the wealth and expectation effects that are derived in Section

3.4 of the main text, we need to prove the following signs for these partial derivatives:

∂i⇤
2

∂w⇤
2

> 0,

∂i⇤
2

∂µ
2

< 0,

∂r⇤
2

∂w⇤
2

< 0,

∂r⇤
2

∂µ
2

< 0,

∂w⇤
2

∂r
1

> 0,

∂w⇤
2

∂µ
2

< 0

E.1 Solving for

∂i⇤
2

∂w⇤
2

,

∂i⇤
2

∂µ
2

,

∂r⇤
2

∂w⇤
2

,

∂r⇤
2

∂µ
2

We can re-write the profit function so it is a function of irrigation, total wealth, drought-tolerant

crop area, and rainfall:

p(i
2

, w
2

, r
2

, r
2

) =ba(w
2

� i
2

) + biit + brrt +
1

2

daa(w
2

� i
2

)2 +
1

2

diii2

t +

+
1

2

drrr2

t + drirtit + diritrt + drrrtrt + drrt (1)

I want to solve for the first and second order conditions that define i⇤
2

(w
2

, µ
2

) and r⇤
2

(w
2

, µ
2

).

Note that the farmer chooses second period irrigation and crop choice in order to maximize

expected second period utility.

max E

1

[u(w
2

+ p(i
2

, w
2

, r
2

, r
2

)] w.r.t. i
2

and r
2

Since we are assuming CARA utility and normally distributed rainfall, we can make use the

fact that if rt ⇠ N(µ, s), then E(egrt) = egµ+ 1

2

g2s2

(Bolton and Dewatripont (2005), p138).

Substituting in our expression for the utility function and applying the above identity, we get that

the farmer is solving max � e� f (i
2

,w
2

,r
2

,µ
2

), where

f (i
2

, w
2

, r
2

, µ
2

) = h(w
2

+ p(i
2

, w
2

, r
2

, µ
2

))� 1

2

h2s2(diri2 + drrr
2

+ dr)
2 (2)
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Since the exponential function is monotonic, the farmer’s maximization problem is equivalent

to:

max f (i
2

, w
2

, r
2

, µ
2

) w.r.t. i
2

and r
2

The first order conditions for this maximization problem are fi = 0 and fr = 0. This system of

equations defines i⇤
2

(w
2

, µ
2

) and r⇤
2

(w
2

, µ
2

). The second order conditions for this maximization

problem are fii < 0, frr < 0 and fii frr � fir fri > 0. In order to solve for
∂i⇤

2

∂w⇤
2

and
∂r⇤

2

∂w⇤
2

, I

take the derivative of the first order conditions with respect to w
2

, and get the resulting system of

equations:

fii
∂i⇤

2

∂w
2

+ fir
∂r⇤

2

∂w
2

+ fiw = 0

fri
∂i⇤

2

∂w
2

+ frr
∂r⇤

2

∂w
2

+ frw = 0

Solving this system of equations, I get the following expressions:

∂i⇤
2

∂w
2

= � 1

det
�

frr fiw � fir frw
�

∂r⇤
2

∂w
2

= � 1

det
�

fii frw � fri fiw
�

where det = fii frr � fir fri. Note that by the second order conditions, we have det > 0.

Similarly, in order to solve for
∂i⇤

2

∂µ
2

and
∂r⇤

2

∂µ
2

, I take the derivative of the first order conditions

with respect to µ
2

, and solve the resulting system of equations, getting the following expressions:
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∂i⇤
2

∂µ
2

= � 1

det
�

frr fiµ � fir frµ
�

∂r⇤
2

∂µ
2

= � 1

det
�

fii frµ � fri fiµ
�

Therefore in order to determine the signs of the comparative statics, it is sufficient to calculate

the second-order partial derivatives and second-order mixed derivatives of f (i
2

, w
2

, r
2

, µ
2

).

Using the expression for f (i
2

, w
2

, r
2

, µ
2

) given in Equation 2 and substituting in the expression

for the profit function given in Equation 1, we get that the first order partial derivatives of f are:

fi = h(�ba + bi + daa(i
2

� w
2

) + diii2 + drir2

+ dirµ
2

)� h2s2dir(diri2 + drrr
2

+ dr)

fr = h(br + drrr
2

+ drii2 + drrµ
2

)� h2s2drr(diri2 + drrr
2

+ dr)

fw = �h(1 + ba + daaw
2

� daai
2

)

fµ = h(diri2 + drrr
2

+ dr)

Furthermore, using the assumed signs of the coefficients from the profit function given in Sec-

tion 3.2 of the main text, we get the following expressions and signs for the second order partial

derivatives:

fii = hdii + hdaa � h2s2d2

ir < 0

fiw = �hdaa > 0

fir = fri = hdri � h2s2drrdir < 0

fiµ = hdir < 0
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frr = hdrr � h2s2d2

rr < 0

frw = 0

frµ = hdrr < 0

Using these signs and expressions for the partial derivatives, we get that

∂i⇤
2

∂w
2

= � 1

det
�

frr fiw � fir frw
�
= � 1

det
( frr fiw) > 0

∂r⇤
2

∂w
2

= � 1

det
�

fii frw � fri fiw
�
=

1

det
�

fri fiw
�
< 0

∂i⇤
2

∂µ
2

= � 1

det
�

frr fiµ � fir frµ
�

= � 1

det
[(hdrr � h2s2d2

rr)(hdir)� (hdri � h2s2drrdir)(hdrr)]

= � 1

det
(hdrrdir � h3s2d2

rrdir � h2dridrr � h3s2drrdirdrr) < 0,

as long as

��dri
��

is not too large.

∂r⇤
2

∂µ
2

= � 1

det
�

fii frµ � fri fiµ
�

= � 1

det
[(hdii + hdaa � h2s2d2

ir)(hdrr)� (hdri � h2s2drrdir)(hdir)]

= � 1

det
(h2diidrr + h2daadrr � h3s2d2

irdrr � h2dridir + h3s2drrd2

ir)

= � 1

det
(h2diidrr + h2daadrr � h2dridir) < 0,

as long as

��dri
��

is not too large.
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All of the signs are as desired.

E.2 Solving for

∂w⇤
2

∂r
1

and

∂w⇤
2

∂µ
2

The farmer chooses second period wealth to maximize the following expression

g(w
2

, r
1

, µ
2

) = u(w
1

+ p(i
1

, w
1

, r
1

, r
1

)� w
2

) + E

1

[u(w
2

+ p⇤(w
2

, µ
2

, r
2

)]

where

p⇤(w
2

, µ
2

, r
2

) = p(i⇤
2

(w
2

, µ
2

), w
2

, r⇤
2

(w
2

, µ
2

), r
2

)

The first order condition for this maximization problem is gw = 0. This implicitly defines

w⇤
2

(r
1

, µ
2

). The second order condition for this maximization problem is gww < 0. In order to

solve for
∂w⇤

2

∂r
1

, I take the derivative of first order condition with respect to r
1

, and get the resulting

equation:

gww
∂w⇤

2

∂r
1

+ gwr = 0

We get
∂w⇤

2

∂r
1

= � gwr
gww

. We have that gww < 0 by the second order conditions. Therefore, in

order to demonstrate that
∂w⇤

2

∂r
1

> 0, it is sufficient to show that gwr > 0. Note that g(w
2

, r
1

, µ
2

)

has two pieces (first period utility and expected second period utility), and first period rainfall only

enters in via first period utility. Therefore, using the expression for the profit function in Equation

1, we get the following derivatives for g(w
2

, r
1

, µ
2

):

gr = u0(w
1

+ p
1

� w
2

)(diri1 + drrr
1

+ dr)

gwr = u00(w
1

+ p
1

� w
2

)(�1)(diri1 + drrr
1

+ dr)
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Therefore, by the concavity of utility, we get

gwr > 0,

as long as,

diri1 + drrr
1

+ dr > 0

i.e. as long as first-period irrigation and drought-tolerant crop area are not so large such that

higher rainfall is bad for profits, which is a reasonable assumption. Therefore, we have demon-

strated that

∂w⇤
2

∂r
1

> 0,

as desired.

In order to solve for
∂w⇤

2

∂µ
2

, I take the derivative of first order condition with respect to µ
2

, and

get the resulting equation:

gww
∂w⇤

2

∂µ
2

+ gwµ = 0

We get
∂w⇤

2

∂µ
2

= �
gwµ

gww
. We have that gww < 0 by the second order conditions. Therefore, in

order to demonstrate that
∂w⇤

2

∂µ
2

< 0, it is sufficient to show that gwµ < 0. Note that g(w
2

, r
1

, µ
2

)

has two pieces (first period utility and second period expected utility), and second period expected

rainfall only enters via expected second period utility. Furthermore, since we have CARA utility,

we can write:

E

1

[u(w
2

+ p⇤(w
2

, µ
2

, r
2

)] = u(w
2

+ p⇤(w
2

, µ
2

, µ
2

)) ⇤ eh(w
2

,µ
2

)

where
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h(w
2

, µ
2

) =
1

2

h2s2(diri⇤
2

(w
2

, µ
2

) + drrr⇤
2

(w
2

, µ
2

) + dr)
2

Taking the derivative with respect to µ
2

and applying the product rule, we get

gµ =u0(w
2

+ p⇤(w
2

, µ
2

, µ
2

)) ⇤ dp ⇤ (w
2

, µ
2

, µ
2

)
dµ

2

⇤ eh(w
2

,µ
2

) +

+ u(w
2

+ p⇤(w
2

, µ
2

, µ
2

)) ⇤ eh(w
2

,µ
2

) ⇤ hµ

Note that this expression is the sum of two products, and that each of the products have three

terms, with one term common to both products, e.g.

gµ = abc + cde

where

a = u0(w
2

+ p⇤(w
2

, µ
2

, µ
2

))

b =
dp⇤(w

2

, µ
2

, µ
2

)
dµ

2

c = eh(w
2

,µ
2

)

d = u(w
2

+ p⇤(w
2

, µ
2

, µ
2

))

e = hµ

In order to calculate gwµ, I apply the product rule for three terms and get that

gwµ = abcw + abwc + awbc + cdew + cdwe + cwde
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Therefore, in order to compute the sign of gwµ, I compute the sign of each of these subcompo-

nents. Before computing the sub-components, I note two important regularity conditions that must

hold in order for me to get the desired signs:

diri⇤
2

(w
2

, µ
2

) + drrr⇤
2

(w
2

, µ
2

) + dr > 0 (3)

and

dir
∂i⇤

2

∂w
2

+ drr
∂r⇤

2

∂w
2

(4)

The first condition states that second period irrigation and drought-tolerant crop area must not

be so high that higher rainfall is bad for profits. The second condition states that the responsiveness

of irrigation to wealth must be greater than the responsiveness of drought-tolerant crop area to

wealth.

We are now ready to compute the signs of the subcomponents.

a =u0(w
2

+ p⇤(w
2

, µ
2

, µ
2

)) > 0, because utility is increasing

aw =u00(w
2

+ p⇤(w
2

, µ
2

, µ
2

))(1 +
∂p⇤(w

2

, µ
2

, µ
2

)
∂w

2

) < 0, because of decreasing

marginal utility and because profits are increasing in wealth
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dp⇤(w
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2
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2

)
dµ
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= diri⇤
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(w
2

, µ
2

) + drrr⇤
2

(w
2

, µ
2

) + dr > 0, by regularity

condition 3

bw =dir
∂i⇤

2
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2

+ drr
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2

, by regularity condition 4

c =eh(w
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2
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) + drrr⇤
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2
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✓
dir

∂i⇤
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2

+ drr
∂r⇤

2

∂w
2

◆
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< 0, by regularity conditions 3 and 3.

d =u(w
2

+ p⇤(w
2

, µ
2

, µ
2

)) < 0, based on the form of the utility function

dw =u0(w
2

+ p⇤(w
2

, µ
2

, µ
2

))(1 +
∂p⇤(w

2

, µ
2

, µ
2

)
∂w

2

) > 0 because utility is

increasing and because profits are increasing in wealth.

e =hµ = h2s2(diri⇤
2

(w
2

, µ
2

) + drrr⇤
2

(w
2

, µ
2

) + dr)(dir
∂i⇤
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) > 0, by

regularity condition 4

ew =h2s2(diri⇤
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) + drrr⇤
2
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dir
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✓

dir
∂i⇤
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∂w
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∂r⇤

2
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◆

< 0, by regularity conditions 3 and 4

Note that in deriving the expression for ew from e, I used the fact that the expressions for
∂i⇤

2

∂µ
2

and
∂r⇤

2

∂µ
2

, derived above in Section A1, do not depend on w
2

.

Therefore, based on the signs of these components, we find that gwµ < 0 as desired. Further-

more, this implies that

∂w⇤
2

∂µ
2

< 0,

as desired.
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