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Abstract

How do rising temperatures affect long-term labor reallocation in
developing economies? In this paper, we examine how increases in tem-
perature impact structural transformation and urbanization within In-
dian districts between 1951 and 2011. We find that rising temperatures
are associated with lower shares of workers in non-agriculture, with ef-
fects intensifying over a longer time frame. Supporting evidence sug-
gests that local demand effects play an important role: declining agri-
cultural productivity under higher temperatures reduces the demand
for non-agricultural goods and services, which subsequently lowers non-
agricultural labor demand. Our results illustrate that rising tempera-
tures limit sectoral and rural-urban mobility for isolated households.
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1 Introduction

Developing economies are commonly characterized by large productivity gaps
across the economy — for example, between agricultural and non-agricultural
sectors (McMillan et al., 2014; Gollin et al., 2014; Herrendorf and Schoell-
man, 2018) and between rural and urban areas (Lewis, 1954; Young, 2013).
Reallocation of workers both across sectors and space could thus be benefi-
cial for economic development if it allows for a more efficient allocation of
human capital.1 While weather shocks favorable to agricultural productivity
have been shown to encourage sectoral reallocation (Emerick, 2018), higher
temperatures have adverse impacts on agricultural incomes and productivity
(Schlenker and Roberts, 2009; Taraz, 2018; Aragón et al., 2021). Thus, it is
possible that rising temperatures under climate change may hinder labor re-
allocation in developing economies where the vast majority of workers engage
in rural agriculture.2

In light of this, this paper addresses a critical empirical question: do ris-
ing temperatures affect the pace of reallocation of workers within local labor
markets, namely through structural transformation and urbanization? A key
feature of the empirical exercise we undertake is our focus on responses to
medium- to long-term climate variations — which capture adaptation or in-
tensification effects more accurately than short-term weather fluctuations —
thus better approximating impacts of future anthropogenic climate change
(Dell et al., 2014; Burke and Emerick, 2016; Kolstad and Moore, 2020).

We address this question in the context of India, where rural-urban mo-
1Labor reallocation would bring meaningful aggregate productivity gains if productivity

gaps are not driven by self selection, i.e., workers with different skills/ability sorting into
certain sectors (Roy, 1951). Recent work using panel data and specifications with individual
fixed effects has documented that the size of observed sectoral productivity gaps is smaller
than previous estimates that have typically relied on cross-sectional data (Hamory et al.,
2021; Alvarez, 2020; Lagakos et al., 2020).

2For sectoral or spatial arbitrage to take place, there must be both an availability of non-
agricultural jobs with higher pay and a sufficiently low cost of switching between sectors or
regions. Negative shocks to agricultural incomes could spill over to other sectors, impacting
demand for non-agricultural labor. In addition, with declining agricultural incomes, a com-
bination of mobility costs and liquidity constraints could present a larger barrier to labor
reallocation.
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bility is low (Munshi and Rosenzweig, 2016) and structural transformation,
particularly the movement from agriculture to manufacturing, is slow and
“stunted” (Binswanger-Mkhize, 2013). We are particularly interested in local
labor market responses, so we focus on sectoral and rural-urban movements
within Indian districts. Local movements within a district likely present those
impacted by climate change with low-cost immediate adaptation strategies;
our analysis thus captures switching decisions of potential movers on the mar-
gin.

We develop a simple general equilibrium model that explores the relation-
ship between agricultural productivity and sectoral allocation of labor. In
developing countries, agriculture constitutes a substantial share of the local
economy and provides an important source of income for a large share of the
population. Productivity shocks to the agricultural sector can thus be im-
portant for other sectors of the economy in general equilibrium. Under this
scenario, adverse agricultural productivity shocks may reduce the demand
for non-agricultural labor through its impact on consumption of local non-
agricultural goods and services. We capture this dynamic — which we refer to
as “local demand effects” — in the model. The model predicts that declines in
agricultural productivity can lead to increases in agricultural labor supply if
the output elasticity of agriculture with respect to labor is less than one, and
if the income elasticity of demand for the agricultural good is also less than
one.

To test the model’s predictions, we assemble a district-level panel data set
spanning 1951 to 2011, combining measures of worker shares across agricultural
and non-agricultural sectors, urbanization rates, and intra-district rural-to-
urban migrant shares with decadal temperature and precipitation variables
constructed using monthly gridded weather data. Our use of sub-national
data allows us to track local labor market responses, focusing on movements
within a district — a margin that has been shown to be especially important
in the context of India (Kone et al., 2018).

We adopt two specifications to quantify the impact of rising temperatures
on structural transformation over different temporal scales. First, we esti-
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mate a panel fixed effect model that exploits decade-to-decade fluctuations in
weather. Our identification strategy relies on the assumption — in line with
the recent climate–economy literature (Dell et al., 2014) — that conditional
on district and region-by-time fixed effects, decade-to-decade fluctuations in
weather are quasi-random. Second, following Burke and Emerick (2016), we
estimate a long differences model that exploits variation in long-term temper-
ature trends over the span of our sixty-year data set, conditional on regional
trends.

We find two main results. First, we find that rising temperatures inhibit
structural transformation in Indian districts. The magnitude of this effect —
estimated using a decadal panel specification — is economically meaningful:
a 1◦C increase in mean decadal temperature in an average Indian district
leads to a 17.0% increase in the share of the labor force who are agricultural
laborers, and a 8.2% decline in the share of the labor force engaged in non-
agriculture. In contrast, we find no detectable impact of rising temperatures
on urbanization and intra-district rural-to-urban migration. This latter result
is in line with Henderson et al. (2017), who find no average impact of adverse
changes in climate on urbanization in Sub-Saharan Africa.

Second, we find that the adverse effects of rising temperatures on structural
transformation are amplified when we examine impacts over a longer time
frame. The larger estimates from our long differences specification suggest
that not only do individuals fail to adapt to sustained, higher temperatures,
they also experience intensification of these adverse impacts over time. Our
results are consistent with sustained warming making reallocation infeasible
for a larger share of households.

We find evidence consistent with our results being driven by local demand
effects. In particular, declining farm incomes arising from lower agricultural
productivity lead to a contraction in demand for local non-agricultural goods
and services, and this in turn leads to a reduction in non-agricultural labor de-
mand. We document a decline in both food and non-food consumption among
households in response to rising temperatures, consistent with a contraction
in local demand. We also find that the decline in the share of the labor force
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engaged in non-agriculture is driven by reductions in the service sector, which
is by nature non-tradable.

We also investigate several other potential mechanisms through which ris-
ing temperatures could affect labor reallocation. Rising temperatures could
generate labor productivity losses of differential magnitudes across agricul-
tural and non-agricultural sectors, which in turn could impact relative labor
demand. Alternatively, rising temperatures could impact labor reallocation
under a scenario where mobility costs are non-zero, as income losses driven by
higher temperatures could make it more difficult for workers to afford these
costs. Rising temperatures could also affect labor reallocation through con-
solidation of agricultural land or shifts in cultivation practices. Additional
empirical analysis yields weak evidence in support of these alternative mech-
anisms playing an important role.

The main contribution of this paper is to shed light on sectoral and spa-
tial reallocation of workers in response to slow-onset changes in climate in a
developing country. The bulk of the existing literature on labor reallocation
and rural-to-urban migration in developing countries uses short-run variation
in weather to estimate effects (Mueller et al., 2014; Bohra-Mishra et al., 2014;
Maystadt et al., 2016; Emerick, 2018; Jessoe et al., 2018; Colmer, 2021). While
exploiting short-run weather variation is advantageous because it allows the
econometrician to control for a number of potential confounding factors, the
primary drawback of this method is that it provides well-identified estimates
of the short-term effects of weather shocks, not climate, on outcome variables
(Auffhammer, 2018; Kolstad and Moore, 2020).

Long-term responses to climate change may differ fundamentally from
short-term responses to weather fluctuations because they account for poten-
tial adaptation or intensification driven by permanent changes in weather that
may have taken place over time. Exploiting longer-term climate fluctuations
thus provides a better estimate of how agents will respond to anthropogenic
climate change (Burke and Emerick, 2016), yet to date this approach has not
been deployed broadly in studies of developing countries.3 Impacts of long-

3One notable exception is Henderson et al. (2017), who document that long-term in-
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term climate shocks could differ substantially in developing settings as agents
may have distinct or limited means of adaptation, due to features of under-
development or high costs to reallocation. We thus extend this literature by
assembling a unique panel data set that spans all districts in India over six
decades in order to examine long-term responses to slow-onset changes in cli-
mate.

Our results on structural transformation are largely consistent with ear-
lier works mentioned above that exploit short-run variation in weather, but
there are some important nuances worth highlighting. Emerick (2018) finds
that transitory high rainfall shocks in India increase the non-agricultural la-
bor share due to increased demand for local non-tradables. Although Emerick
(2018) analyzes precipitation rather than temperature, his findings are broadly
consistent with ours — beneficial weather shocks decrease the share of the la-
bor force engaged in agriculture, while adverse weather shocks increase it. Our
results are also complementary to Jessoe et al. (2018), who find that transi-
tory increases in extreme annual temperatures lead to a reduction in local
non-agricultural wage employment in villages in rural Mexico, with effects op-
erating through an agricultural channel. In contrast to our long-term results,
Colmer (2021) finds that short-term increases in temperature are associated
with a reduction in the agricultural labor share at the district level from 2004-
2008. Using the same data source as Colmer (2021) over a longer time frame,
we show that both his short-term result and our long-term result co-occur in
the data. Our estimates using decade-to-decade variation in climate thus sug-
gest that leaving agriculture could be a short-term adjustment, yet it may not
be a viable option in the medium- to long-term.

We next consider our results on urbanization and migration in the context
of the literature on rural-urban movements. Our results are complementary
to Henderson et al. (2017), who document that long-term increases in dryness
have no average impact on urbanization in Sub-Saharan Africa. We study a

creases in dryness have no average impact on urbanization in 29 countries in Africa. The
focus of this paper is to estimate impacts of rising temperatures on structural transforma-
tion. For completeness, we also estimate impacts on urbanization and find null results,
similar to those documented in Henderson et al. (2017).
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similar time period and also find a null effect of rising temperatures on urban-
ization in India. Further, both our papers document impacts in response to
adverse changes in climate that are spatially heterogeneous: Henderson et al.
(2017) find that urbanization increases in a subset of regions with manufac-
turing centers, while we document a decline in urbanization in regions with
sparse road networks. Our paper examines impacts on sectoral mobility, which
allows us to explore how climate change interacts with the pace of structural
transformation in a developing economy. We also study a longer time frame
— our data spans 288 districts over sixty years — which enables us to quantify
impacts over two different temporal scales and to explore whether impacts are
attenuated or magnified in the longer-term.

The rest of this paper is organized as follows. In Section 2, we discuss
several mechanisms through which rising temperatures could impact labor
reallocation. In Section 3, we detail our data sources and present descriptive
statistics. In Section 4, we describe our empirical specification. In Section 5,
we discuss our results, explore underlying mechanisms and present robustness
checks. In Section 6, we conclude.

2 Mechanisms

In this section, we outline three potential mechanisms through which rising
temperatures could affect labor reallocation in the short- and long-term.
Relative labor productivity loss Rising temperatures adversely impact
labor productivity in both the agricultural sector (Schlenker and Roberts,
2009; Dell et al., 2012; Taraz, 2018) and the non-agricultural sector (Hsiang,
2010; Somanathan et al., 2021). In a two-sector economy with perfectly inelas-
tic labor supply and zero costs to moving across sectors, if rising temperatures
cause a relatively greater labor productivity loss in the agricultural sector, this
would lead to a decline in demand for agricultural labor, and subsequently
lower agricultural wages and employment. If, on the other hand, heat-induced
labor productivity loss is relatively greater in the non-agricultural sector, then
we would expect to find the opposite: rising temperatures would trigger a
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reduction in the demand for non-agricultural labor.
Local demand effects On the other hand, changes in local demand aris-
ing from a general equilibrium mechanism introduce additional effects on labor
reallocation. For simplicity, we assume rising temperatures reduce only agri-
cultural productivity and bring no productivity loss to the non-agricultural
sector. If the income elasticity of non-agricultural goods is greater than that
of agricultural goods, then a decline in farm incomes arising from lower agri-
cultural productivity may result in a subsequent contraction in demand for
local non-agricultural goods and services.4 This in turn would trigger a reduc-
tion in demand for non-agricultural labor, and lead to more labor engaged in
the agricultural sector.

In Appendix A, we develop a mathematical model that generates local de-
mand effects. We are interested in predicting how a decrease in agricultural
productivity induced by rising temperatures will affect labor supply to the
non-agricultural sector. We are also interested in understanding how trans-
portation costs might modulate this relationship. Our model includes a rural
region, which has an agricultural sector and a service sector, and an urban
region, which has a manufacturing sector and a service sector. There are ice-
berg costs to transporting the agricultural good, and the service good is not
tradable across the two regions.

We assume that the elasticity of agricultural output with respect to labor
is less than one, and that individuals in both regions have Stone-Geary prefer-
ences, with the income elasticity of the agricultural good being less than one.
With these assumptions, our model delivers the prediction that a decrease in
agricultural productivity will lead to a decline in the non-agricultural labor
supply in the rural region. Furthermore, when we explore the role of iceberg
transportation costs, we find that these local demand effects are concentrated
in areas with higher transportation costs: for example, places with sparse
road networks. The mechanisms underlying our theoretical model are similar
to the mechanisms in many models of structural transformation (Matsuyama,

4Subsistence (or quasi-subsistence) agriculture is one scenario that can generate income
elasticities such as these (Gollin and Rogerson, 2014).
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1992; Kongsamut et al., 2001; Gollin et al., 2002; Gollin and Rogerson, 2014;
Herrendorf et al., 2014; Bustos et al., 2016).
Liquidity and mobility costs Both mechanisms outlined above rely on
an important assumption of perfect labor mobility across sectors. However,
reallocation from the agricultural to non-agricultural sector cannot take place
if liquidity and mobility costs are too high.5 For example, a worker may in-
cur travel costs (e.g. bus fares) to leave their village for a non-agricultural
job in other parts of the district, or may require access to credit or savings to
cover the upfront cost of job search or to sustain possible unemployment spells.
Assuming rising temperatures disproportionately affect labor productivity in
the agricultural sector, the resulting loss in farm income would make it more
difficult for a worker to afford these costs, making sectoral movements to the
relatively unaffected non-agricultural sectors less likely. These effects can be
generated from a two-period Roy-Borjas model (Roy, 1951; Borjas, 1987) in
which individuals reallocate their labor subject to incentive-compatibility and
feasibility constraints.6 Furthermore, we would expect these effects to be con-
centrated in places where liquidity and mobility costs are higher: for example,
places with sparse road networks and/or poor access to bank credit.

3 Data

3.1 Census Data

We use data from the decadal national Census of India, spanning the years
1961 to 2011. Specifically, we extract outcome measures from the Primary
Census Abstract (PCA) and Migration (D-series) data tables, which provide
district-level summaries of demographic and economic indicators. For each
census year, we construct four key outcome measures at the district level:

5Liquidity costs could arise from credit and savings constraints (Bryan et al., 2014; An-
gelucci, 2015; Gazeaud et al., 2021), while mobility costs could arise from informational
frictions or transportation costs (Gollin and Rogerson, 2014; Gertler et al., 2019; Sham-
dasani, 2021).

6See Cattaneo and Peri (2016) for an example of such a model applied to the migration
decision.
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the share of the labor force who are agricultural laborers, the share of the
labor force who are non-agricultural workers, the share of the total population
residing in urban areas, and the share of the male population who are rural-
to-urban intra-district migrants.7 Note that our measures of agricultural labor
share and non-agricultural worker share are not perfectly collinear because we
focus only on wage workers in agriculture, and thus exclude cultivators from
our measure.8

We focus on sectoral and spatial movements within districts for two rea-
sons. First, Census data limitations preclude us from being able to identify
individuals who have switched sectors and moved to another district, nor can
we identify the origin districts of individuals who have moved across districts.
Second, cross-district migration rates in our empirical setting are low (Kone
et al., 2018), therefore our analysis of within-district labor reallocation in re-
sponse to climate shocks is unlikely to be confounded by spillovers between
districts due to cross-district migration.

To account for the fact that districts split and boundaries are adjusted
over time, we use concordance tables from Kumar and Somanathan (2017)
and Singh et al. (2011) to construct consistent district boundaries that span
the same area between 1961 and 2011. Specifically, we map every district in
each Census year to its parent district in 1961.9 This results in 288 consistent
districts, as illustrated in Appendix Figure B1a. The various splits and bound-
ary changes between 1961 and 2011 can be deduced from the grey boundaries
that trace out the 2011 Census districts delineation. Appendix Figure B1b

7Our migration measure based on last residence captures the most recent permanent
migration, and is subject to under-counting seasonal or past moves. It should therefore be
considered a lower bound of the true magnitude of migration.

8Recent work has also documented that cultivators in India have limited occupational
and spatial mobility (Fernando, 2020).

9For example, Kancheepuram and Thiruvallur districts in Tamil Nadu were formed when
Chengalpattu district split in 2001. In this case, we designate Chengalpattu as the consistent
district from 1961 to 2011. There are also instances where a district does not have a unique
parent district — this happens when a district is carved out of two or more original districts.
For these cases, we create a “greater” parent district which is the superset of all parent
districts. As an example, Narmada district in Gujarat was carved out of two districts —
Vadodara and Bharuch — in 2001, therefore we designate “Vadodara and Bharuch” as the
consistent district boundary from 1961 to 2011.
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highlights the six regions that span all the districts that form our analysis
sample.

3.2 National Sample Survey Data

We supplement our Census data with rich individual- and household-level sur-
vey data from the National Sample Survey (NSS) spanning the years 1987-2012
— the longest time period for which publicly available NSS data contains dis-
trict identifiers. We extract data from two NSS modules — the “employment
and unemployment” module and the “consumer expenditure” module.

For each NSS year for which these modules are canvassed, we aggregate
the individual/household-level data to generate district-level averages of the
following outcomes: the share of the labor force who are agricultural workers,
the share of the labor force who are non-agricultural workers, the share of the
labor force who are engaged in manufacturing, services, and construction, as
well as average total consumption, food consumption, and non-food consump-
tion.10 We harmonize the district-level panel data to have consistent district
boundaries over time, applying the same methodology described above for the
Census data.

3.3 Weather Data

We use gridded monthly data on temperature and precipitation from the Ter-
restrial Precipitation: Monthly Time Series (1900–2014), version 4.01, and
the companion Terrestrial Air Temperature data set (Matsuura and Willmott,
2015a,b).11 We construct district-level weather data by taking the weighted
average of all grid points within 100 kilometers of each district’s centroid, using
weights that are the inverse of the squared distance between the grid point and

10Agricultural worker share constructed using the NSS includes both agricultural laborers
and cultivators; the NSS does not make a distinction between the two. Non-agricultural
worker share constructed using the NSS is analogous to that constructed using Census data.
We provide more details on the construction of each outcome variable in Data Appendix C.

11This monthly weather data set has been used in numerous papers on India, including
Allcott et al. (2016), Emerick (2018), and Kaur (2019).
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the district centroid. We construct measures of average temperature and pre-
cipitation during the main agricultural growing season months (June through
February) as these have the greatest impacts on agriculture. Given our inter-
est in responses to slow-onset changes in climate, we aggregate the growing
season weather variables to ten-year averages.

3.4 Infrastructure and Yields Data

We use data on road infrastructure and crop yields from the Village Dynamics
in South Asia (VDSA) Meso dataset. For road infrastructure, we use the total
length of roads in kilometers in each district in 1970 — the earliest year for
which this data is available. We construct a district-level road density measure
by dividing the total length of roads by the total surface area. Appendix
Figure B2a summarizes the distribution of the road density measure across all
districts. We create a binary measure that takes the value one if road density
in a district is above the median level of the full distribution (0.10km/km2, as
indicated by the solid vertical line in the figure), and zero otherwise. Appendix
Figure B2b plots a heat map of the road density measure across all districts,
with shades of red and blue denoting districts with above and below median
road density respectively.

The VDSA Meso data set contains annual measures of district-level agri-
cultural yields spanning the years 1966 to 2010. We construct a composite
yield measure that aggregates yields across all crops that have non-missing
price data, using base-year 1966-1970 crop prices as weights.

3.5 Bank Credit Data

We use data on bank credit from the Basic Statistical Returns, collected by
the Reserve Bank of India. In particular, we use the total bank credit in
each district in 1972 — the earliest year for which this data is available. We
construct a district-level bank credit per capita measure by dividing total bank
credit by total population. Appendix Figure B3a summarizes the distribution
of the bank credit per capita measure across all districts. We create a binary
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measure that takes the value 1 if bank credit per capita in a district is above
the median level of the full distribution (19 Rupees, as indicated by the solid
vertical line in the figure), and zero otherwise. Appendix Figure B3b plots
a heat map of the bank credit per capita measure across all districts, with
shades of red and blue denoting districts with above and below median road
density respectively.

Further details on the various data sources and the construction of all key
variables described in this section can be found in Data Appendix C.

3.6 Descriptive Statistics

Table 1 provides summary statistics for decadal weather and Census variables
for each census year. We report means and standard deviations of key variables
for all balanced districts in the sample.

First, the table summarizes the two weather variables — temperature and
precipitation. The first row confirms that temperatures have been rising over
time. The growing season average monthly temperature is 0.42 ◦C higher
in 2011, relative to 1961. On the other hand, the second row suggests that
growing season average monthly precipitation has not changed monotonically
over time — in fact, we see a decline of 9mm over the same time period.

Next, the table summarizes the four Census outcome measures. The share
of the labor force who are agricultural laborers is 15.1% on average in 1961,
and increases to 30% by 2011. We see a similar increase over time in the share
of the labor force who are non-agricultural workers — this rises from 27.2% in
1961 to 41.7% in 2011. We also see growth in urbanization — the share of total
population residing in urban areas is 15.9% on average in 1961 and increases
steadily over time to 27.5% in 2011. This is reflected in intra-district rural-
to-urban migration patterns, which have also increased over the decades.12

To complement Table 1, Figure 1 plots the spatial distribution of changes in
the long-run climate and outcome variables from 1961 to 2011, by district.

12Appendix Table B1 provides summary statistics for decadal weather and NSS variables
for each year the NSS is canvassed. We observe a similar pattern of rising temperatures and
increasing shares of non-agricultural workers over time.
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Inland India has experienced much larger increases in temperature, relative
to the coastal areas (panel a). Perhaps unsurprisingly, inland India has also
experienced larger declines in precipitation compared to areas closer to the
coast (panel b). It is evident that temporal changes in the Census outcomes
(panels c-f) are heterogeneous across space. The share of total population
residing in urban areas has increased by more than 18 percentage points in one-
sixth of the districts, while another one-sixth of the districts have experienced
less than a 4 percentage points increase. The biggest gains in agricultural
labor shares over the decades appear to be concentrated among districts in
the Eastern, Central, and Southern regions. The intra-district migrant share
has decreased in one-third of the districts, mostly in the Northern and Eastern
regions.

Appendix Figure B4 illustrates the relationship between long-run changes
in non-agricultural worker share and long-run changes in decadal temperature
for all districts in our sample. We observe that an increase in temperature is
associated with a reduction in non-agricultural worker share. Motivated by
this pattern in the raw data, we proceed to rigorously test the robustness of
this relationship with the full panel data set, using two empirical specifications
that we describe in the next section.

4 Empirical Specification

4.1 Panel Approach

To estimate the effect of climate on structural transformation and urbaniza-
tion, we estimate a regression of the form:

lnYjsrt =βTjsrt + γPjsrt + αj + αt + αsrt + εjsrt, (1)

where Yjsrt represents the outcome of interest, in district j, located in state
s and region r, in year t.13 For our main specification, Yjsrt represents the

13For migrant share, lnYjsrt = ln(Yjsrt + 0.01) to account for zeros in the sample.
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share of agricultural laborers, the share of non-agricultural workers, the share
of the total population residing in urban areas, or the share of rural-to-urban
intra-district migrants in the male population. Tjsrt is the average temperature
measured in degrees Celsius over the growing season months (June through
February) in the past decade ending in year t, and Pjsrt is the average precip-
itation measured in millimeters over the growing season months in the past
decade ending in year t. αj is a vector of district fixed effects that controls for
any time-invariant district-specific factors that may be correlated with climate
or local economic patterns and αt is a vector of year fixed effects that controls
for changes over time. αsrt is a term that controls for time-varying region-
specific or state-specific effects. Depending on our specification, this is either
a vector of region-specific linear time trends, state-specific linear time trends
or region-year fixed effects; the goal is to control for unobserved factors that
may be correlated with climate or local economic patterns over time. Lastly,
εjsrt is an idiosyncratic error term. We cluster our errors at the district level
to allow for potential serial correlation over time within each district. We also
report Conley standard errors that allow for spatial correlation up to 500km
and arbitrary serial correlation in the error term (Conley, 1999).14

The identifying assumption is that, conditional on the inclusion of district
and year fixed effects, along with the region/state-year controls, any remain-
ing variation in decadal temperature and precipitation is essentially random.
This in turn allows for a causal interpretation of the β and γ coefficients as
the effect of slow-onset changes in climate on structural transformation and
urbanization.

Predictions for the sign of β, the coefficient of interest, are theoretically
ambiguous. If rising temperatures lead to relatively greater productivity losses
in the agricultural sector, this would lead to a decline in demand for agricul-
tural labor. Under this scenario, we would expect β < 0 in regressions where
the share of agricultural laborers is the dependent variable, and β > 0 in
regressions where the non-agricultural worker share, urbanization, or the mi-

14To implement Conley standard errors, we use Stata routines from Hsiang (2010), Colella
et al. (2019), and Fetzer (2020).
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grant share is the dependent variable. On the other hand, if a decline in farm
incomes arising from low agricultural productivity under rising temperatures
leads to local demand effects or exacerbates liquidity and mobility costs, we
would expect to see a larger share of workers in agriculture over time as higher
temperatures persist — we would thus find the opposite results under this
scenario.

4.2 Long Differences Approach

Our panel specification with district and year fixed effects identifies the im-
pact of location-specific changes in decadal temperatures on labor realloca-
tion: these estimates can be interpreted as medium-run responses to climate
change. In the longer-run, changes in average climate may affect labor reallo-
cation differently if the medium-run effects are mediated through adaptation,
or compounded and intensified over time.

To complement our panel estimates of the effect of climate on structural
transformation and urbanization, we follow Burke and Emerick (2016) and
estimate a long differences regression of the form:

∆lnYjsr =βLD∆Tjsr + γLD∆Pjsr + αr + εjsr. (2)

In this regression, ∆lnYjsr represents the difference (in natural logarithm)
of the outcome of interest between two periods: 1961–1981 and 1991–2011.15

The independent variables ∆Tjsr and ∆Pjsr are differences in the average
decadal growing-season temperature and precipitation over congruent peri-
ods.16 αr is a region fixed effect that allows for differential time trends across
the regions in our sample. εjsr is an idiosyncratic error term.

Because each observation is a district-specific difference of two periods in
15The climatology literature refers to a 30-year lagged average as a “climate normal”

(Arguez and Vose, 2011; Bento et al., 2021). This motivated our choice of window length
for the end points of our long-difference specification.

16More specifically, the outcomes and dependent variables in 1961-1981 are calculated
as the average of 1961, 1971, and 1981 decadal observations, and those in 1991-2011 are
calculated as the average of 1991, 2001, and 2011 decadal observations.
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time, any time-invariant district factors are differenced out. Unbiased esti-
mates of βLD and γLD thus rely on changes in temperature and precipitation
between the two periods that are not correlated with time-trends that also
affect labor reallocation. We argue that conditional on region fixed effects,
long-term changes in district temperature and precipitation are likely exoge-
nous with respect to our outcomes. As with Equation 1, the signs of the
coefficients of interest, βLD, are theoretically ambiguous.

In addition to the magnitude and sign of βLD, the magnitude of βLD rel-
ative to β from Equation 1 is also of interest. As discussed in Dell et al.
(2014) and Burke and Emerick (2016), a comparison of panel and long dif-
ference estimates can provide insight on the existence of adaptation versus
intensification effects. In their seminal paper, Burke and Emerick (2016) find
that the adverse impact of high temperatures on crop yields in the U.S. is
attenuated slightly when they move from an annual panel specification to a
long differences specification that spans 1980-2000. However, in most spec-
ifications they find no statistically significant difference between their panel
and long difference estimates, suggesting that there is only minimal longer-
term adaptation to high temperatures in their study context. We consider the
role of adaptation versus intensification effects in our setup. To fix ideas, let
us focus on the share of agricultural laborers, and suppose that in the panel
specification we find β > 0: in other words, higher temperatures increase the
share of agricultural laborers. Then, moving to the long differences estimate,
suppose we find β > βLD > 0. In this case, in the longer time horizon, rising
temperatures still have an adverse effect of increasing the share of agricultural
laborers, but the magnitude of this effect is diminished over the longer time
frame, suggesting that agents are able to adapt in the presence of sustained
temperature increases. On the other hand, suppose that we find βLD > β > 0.
This would suggest that the effect of rising temperatures on the share of agri-
cultural laborers is intensified as we move from the decadal panel specification
to the long differences specification, which implies that adverse climate effects
compound and intensify over the longer term.

17



5 Results

5.1 Panel Approach

Table 2 presents the effects of temperature and precipitation on four key out-
comes — share of agricultural laborers, share of non-agricultural workers, ur-
banization, and share of intra-district migrants — using the panel approach
(Equation 1). For each outcome, the first column presents regression estimates
using region-specific linear time trends while the second column presents re-
gression estimates with region-year fixed effects. The latter is our preferred
specification since region-year fixed effects control for arbitrary unobserved
region-specific confounding factors over time. We report results with standard
errors clustered at the district level in parentheses and with Conley standard
errors in brackets.

In Columns 1 and 2 of Table 2, we document a positive, statistically signifi-
cant effect of rising average temperatures on the share of agricultural laborers.
Using our preferred specification, we find that a 1◦C increase in temperature
leads to a 17.0% increase in the share of the labor force engaged in agricul-
ture.17 At the same time, we find that an increase in decadal precipitation
may have a negative effect on the share of agricultural laborers, though this
effect is not statistically different from zero once we include region-year fixed
effects. Further, the magnitude of the impact of precipitation on the share
of agricultural laborers is much smaller than that of temperature.18 This is
in line with recent studies that have documented significantly larger impacts
of temperature on agricultural production relative to rainfall in the Indian
context (Burgess et al., 2017; Colmer, 2021).

We find a negative effect of rising average temperatures on the share of
non-agricultural workers in Columns 3 and 4 of Table 2: a 1◦C increase in
temperature is associated with a 8.2% reduction in the share of the labor force

17We calculate effect sizes using the formula %∆y = e(β∆x) − 1.
18Based on the coefficients in Column 1 of Table 2, where the effect of rainfall is statis-

tically significant, a one standard deviation increase in decadal temperature would have a
roughly nine times greater impact on the share of agricultural laborers than a one standard
deviation increase in decadal precipitation.
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engaged in non-agriculture. At the same time, we find that an increase in
decadal precipitation has no detectable impact on the share of non-agricultural
workers in the labor force. Next, in Columns 5 and 6 of Table 2, we fail to find
any detectable impact of rising average temperatures on urbanization rates.
This result is in line with Henderson et al. (2017), who similarly document no
average impact of adverse changes in climate on urbanization in Sub-Saharan
Africa. Finally, in Columns 7 and 8 of Table 2, we find that rising temperatures
have no detectable impact on the share of rural-to-urban intra-district migrants
— while the point estimate is negative, it is imprecisely estimated.

Consistent with the idea that temperature has larger impacts on agricul-
tural production relative to rainfall, we find that rising average precipitation
has a small, negative effect on the share of agricultural workers and no de-
tectable effect on our other outcomes. We conduct an additional test where
we run the same regression in Equation 1 with region-year fixed effects, drop-
ping precipitation. The coefficients on temperature are almost identical: 0.162
(with agricultural labor share as the dependent variable), -0.086 (with non-
agricultural worker share as the dependent variable), 0.001 (with urbanization
as the dependent variable), and -0.018 (with intra-district migrant share as
the dependent variable). Given these patterns, we focus only on interpreting
the coefficients on temperature in our analysis moving forward.

Given that employment in agriculture is seasonal, it is common for workers
to engage in multiple activities across different sectors within a year (Emerick,
2018; Breza et al., 2021). In Appendix Table B2, we further investigate how
labor is reallocated in response to rising temperatures using detailed classifica-
tion of workers’ employment. The Census splits worker counts into two groups:
main and marginal workers, which we interpret as proxies for full-time and
short-term, seasonal workers respectively. We find that rising average temper-
atures lead to an increase in both main and marginal agricultural labor shares
(Panel A). Next, the NSS data contains information on the usual primary and
secondary occupations of employed individuals. We find suggestive evidence
that rising average temperatures lead to an increase in both primary and sec-
ondary worker shares in agriculture, and a corresponding decrease in primary
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worker shares in non-agriculture (Panel B). Taken together, this evidence sup-
ports that the margin of adjustment comes from workers who primarily engage
in non-agriculture switching to agriculture full-time or on a short-term basis
in response to rising temperatures.

The existing literature has demonstrated significant non-linear effects of
temperature — in which damages from rising temperatures intensify above a
certain threshold — for outcomes including crop yields (Schlenker and Roberts,
2009), economic production (Burke and Emerick, 2016), labor supply (Graff
Zivin and Neidell, 2014) and migration (Bohra-Mishra et al., 2014). We explore
non-linear temperature effects in our empirical setting by allowing the effect
of rising temperatures to vary based on whether a district’s long-run average
growing season temperature is above or below the median across all districts.19

This specification allows us to explore whether increases in temperature have
an intensified effect in districts with a higher baseline level of heat.

Results in Appendix Table B3 provide evidence that there are non-linear
effects of temperature on agricultural labor share and non-agricultural worker
share. While higher temperatures increase the share of the labor force engaged
in agriculture across both hotter and less hot districts, the point estimate for
hotter districts is larger in magnitude and more precisely estimated than that
for less hot districts. Similarly, higher temperatures reduce the share of the
labor force engaged in non-agriculture in both hotter and less hot districts, but
the point estimate for hotter districts is larger in magnitude and more precisely
estimated than that for less hot districts. These patterns are consistent with
previous findings that damages from rising temperatures may intensify above
a certain threshold. However, given that we do not have a sufficiently large

19As our analysis includes agricultural channels, it would be ideal to use a temperature
data set with daily observations to capture non-linear temperature effects. Daily temper-
ature data would enable us to construct daily temperature bins (Schlenker and Roberts,
2009) or degree days (Deschênes and Greenstone, 2007; D’Agostino and Schlenker, 2016),
measures which are used widely in the climate change literature. However, the commonly
used daily gridded weather data sets such as the Modern-Era Retrospective Analysis for
Research and Applications (Rienecker et al., 2011) and ERA-Interim (Dee et al., 2011) only
have coverage starting in 1979, corresponding to the era of modern remotely sensed data.
As a result, these daily weather data sets are not compatible with our Census data which
begins in 1961.
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sample to detect a statistically significant difference across the two groups, we
acknowledge that these results are suggestive.

Lastly, we carry out an additional empirical exercise that allows us to con-
trast the long-term effects of rising temperatures documented here with short-
term effects that have been previously documented in the literature (Colmer,
2021). Specifically, we run two specifications using data from the National
Sample Survey and present results in Appendix Table B4. First, we imple-
ment our panel specification (Equation 1) using this alternative data source
in Panel A. We document that rising average decadal temperatures lead to
a substantial increase in the share of the labor force engaged in agriculture
and a corresponding decline in the share of the labor force engaged in non-
agriculture. These precisely estimated effects are consistent with our results
in Table 2, suggesting that our findings are robust across the two data sets.
Next, we split the climate variables into current year averages, similar to that
used in Colmer (2021), and decadal averages, similar to that used in our panel
approach, in Panel B.20 This specification allows us to look at both the short-
term and long-term effects of temperature simultaneously. We document that
rising average current temperatures are associated with a decline in the share
of the labor force engaged in agriculture and a corresponding increase in the
share of the labor force engaged in non-agriculture — these effects are consis-
tent with the short-term effects documented in Colmer (2021). Concurrently,
we find that rising average decadal temperatures have opposite effects that are
consistent with the long-term patterns we document in Panel A as well as in
Table 2.

5.2 Long Differences Approach

Table 3 presents the effects of temperature and precipitation on our four key
outcomes using the long differences approach (Equation 2). Taken together,
the signs of the long differences estimates are consistent with the panel es-
timates in Table 2. Controlling for regional trends, we find that districts

20The decadal averages paired with NSS outcomes are averages of one-year to ten-year
lags; therefore they do not overlap with the current year climate measures.
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that experienced greater increases in decadal temperatures from 1961-1981
to 1991-2011 have higher shares of agricultural laborers and lower shares of
non-agricultural workers, with both effects significant at the 1% level.

Importantly, for both of these outcomes, our long differences coefficient
estimates are larger in absolute value than the corresponding panel coefficient
estimates.21 For example, the coefficient on temperature in the agricultural
labor share regression is 0.157 in our panel specification (Table 2), and it
increases to 0.3819 in our long differences specification (Table 3). As discussed
in Section 4.2, this suggests intensification effects of warming. We thus find
adverse impacts of rising temperatures on structural transformation in the
medium-term, and the impacts from sustained higher temperatures appear
even larger over a longer time frame.22

5.3 Mechanisms

In this section, we empirically investigate potential mechanisms through which
rising temperatures could affect labor reallocation.

To begin, we test the effect of rising temperatures on agricultural yields
— the basis underlying all three mechanisms outlined in Section 2. While the
temperature-yield relationship has already been established in the literature
(Schlenker and Roberts, 2009; Taraz, 2018), we replicate this result using data
from our empirical context in Panel A of Appendix Table B5. We find a
strong, negative effect of higher current year average temperatures on yields:
a 1◦C increase in current growing season temperature is associated with a 5.9%
reduction in yields aggregated across all crops. These results provide empirical
support that shocks to agricultural productivity may be driving the impacts

21For the share of agricultural laborers, the p-value of the difference is 0.0041, while for
the share of non-agricultural workers, the p-value is 0.047.

22These intensified longer-run effects of rising temperatures are consistent with a scenario
where local demand effects described in Section 2 act as the main mechanism. Broadly
speaking, as warming negatively affects agricultural productivity, there is a reduced de-
mand for non-agricultural goods and services, leading to a contraction in the size of the
non-agricultural labor force. As persistent warming over a longer time frame prolongs the
reduction in local demand, the contraction of the non-agricultural sector is intensified over
time.
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of climate change on labor reallocation.
Next, we gauge the validity of local demand effects and liquidity and mo-

bility costs as possible mechanisms by exploring heterogeneous effects. Specif-
ically, we examine whether certain features of development in a given district
— road connectivity and access to credit, in particular — play a role in mod-
ulating the effect of climate change on labor reallocation. If local demand
effects drive our results, we would expect to see intensified effects in districts
with stronger local price effects (sparse road networks) and in places where it
is harder for individuals to smooth consumption across periods (poor access
to bank credit).23 If liquidity and mobility costs drive our results, we would
expect to see intensified effects in areas where these costs are effectively higher,
specifically districts with sparse road networks and poor access to bank credit.
Both mechanisms predict the same set of heterogeneous patterns; we turn to
the data to rigorously test if the empirical results are consistent with these
two mechanisms.

In Table 4, we augment our specification in Equation 1 to allow for the net
effects of temperature and precipitation to vary based on two distinct features
of development: road connectivity in Panel A and access to formal credit in
Panel B.24 We find that the effects of rising average temperatures on the share

23In Appendix A, we formally show that local demand effects are intensified in areas with
higher transportation costs. While our set-up does not allow for multiple periods in order to
fully model the impact of credit access, the parsimonious specification suggests that credit
access could have additional effects on labor reallocation through consumption. In particular,
we note that agricultural productivity shocks change the equilibrium non-agricultural labor
share through a reduction in consumption of non-agricultural goods and services. Individuals
in districts with access to credit are better able to smooth consumption across periods
relative to those in districts with limited credit access. Therefore, the responsiveness of
non-agricultural labor to agricultural productivity shocks would be attenuated in places
with better access to bank credit.

24We interact the weather variables with binary measures and estimate:

lnYjsrt = βTjsrt + γPjsrt + βDTjsrt ∗Dj + γDPjsrt ∗Dj + αj + αt + αDt + αsrt + εjsrt

, where Dj is a binary variable that takes the value 1 if the baseline road density/bank credit
per capita in district j is above the median of the distribution across all districts, and 0
otherwise. We also include a heterogeneous-group-by-year fixed effect αDt, which allows for
each subgroup to have different unobserved shocks over time. All other terms are as defined
above in Equation 1. In this specification, β and γ capture the effects of decadal changes in
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of agricultural laborers and the share of non-agricultural workers documented
in Table 2 are driven entirely by districts with below median road density and
below median bank credit per capita at baseline (Panels A and B, Columns
1-4). While we document an overall null effect of rising average temperatures
on urbanization rates and the share of rural-to-urban intra-district migrants
in Table 2, heterogeneity analysis in Table 4 reveals interesting patterns that
are complementary to our results on sectoral reallocation — rising average
temperatures in districts with below median road density at baseline are asso-
ciated with a reduction in the share of the total population residing in urban
areas (Panel A, Columns 5 and 6), and this reduction is entirely attenuated in
districts with well-developed road networks. Impacts of rising temperatures on
rural-to-urban migrant share are complementary to our results on urbanization
(Panel A, Columns 7 and 8).25

Across all our outcome measures, the average effects of rising temperatures
in districts with sparse road networks and limited access to formal credit are
larger than the average effects in the full sample, which suggests that these
features of underdevelopment amplify the impacts of rising temperatures on
the degree of structural transformation and urbanization in Indian districts.
These heterogeneous results are consistent with both local demand effects and
liquidity and mobility costs as possible mechanisms.

To disentangle these two mechanisms, we turn to additional tests in Ta-
bles 5 and 6. First, we examine the effect of rising average temperatures
on household consumption across three categories — total consumption, food

temperature and precipitation respectively in districts with limited road connectivity/credit
access, while β + βD and γ + γD capture the effects of decadal changes in temperature and
precipitation respectively in districts with extensive road connectivity/credit access.

25One important concern is that districts with more roads or commercial banks might
also be districts in which agricultural productivity is less sensitive to higher temperatures
— for example, due to differences in geography or in access to technological innovations
such as heat tolerant seeds. In Panels B and C of Appendix Table B5, we estimate the
temperature-yield relationship for each subgroup of districts. Across both panels, we find
that the coefficients on the interaction terms are small and statistically insignificant, which
suggests that there are no differential impacts of current year average temperature on yields
across districts with below/above median road density (panel B) and across districts with
below/above median bank credit per capita (panel C).
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consumption and non-food consumption. We document significant declines in
household consumption across all three categories in Panel A of Table 5, which
suggests a reduction in demand for both farm and non-farm output in response
to rising temperatures. Next, we decompose the effect of rising average tem-
peratures on non-agricultural worker shares across three sectors — services,
construction and manufacturing. We find significant reductions in the share
of the labor force engaged in services, which is by nature non-tradable (Panel
B, Table 5). In contrast, there is no detectable impact on the share of the
labor force engaged in construction and manufacturing — while the estimated
coefficients are also negative, they are imprecisely estimated and not statisti-
cally different from zero at standard levels of significance. These patterns are
consistent with local demand effects driving a reduction in demand for local
non-agricultural goods and services, which subsequently leads to a decline in
the share of the labor force engaged in these sectors.

Further, we explore the heterogeneous effect of rising average temperatures
across different segments of the population. In particular, we allow for the net
effects of temperature and precipitation to vary by social grouping (caste) and
by educational attainment. If liquidity and mobility costs dominate, we would
expect effects to be concentrated among workers for whom these constraints
are more likely to bind — we proxy for this group of workers using lower-
caste and lower-educated individuals. In Table 6, we find that the patterns
of labor reallocation documented in Table 2 are similar for lower-caste and
higher-caste households (Panel A), as well as for lower-educated and higher-
educated households (Panel B).26 Given that these different segments of the
population appear to be responding similarly, it is unlikely that these effects
are driven primarily by exacerbated liquidity and mobility costs.

Taken together, the above analyses support a local demand effects mecha-
nism since we find that the impacts of rising temperatures on labor reallocation
are i) larger in less developed districts with sparse roads and limited access to

26For agricultural worker share, the coefficients on decadal average temperatures are sta-
tistically indistinguishable at standard levels across the education groups and the social
groups.

25



banks, ii) larger in the services (non-tradable) sector, iii) transmitted through
reductions in demand for both farm and non-farm goods, and iv) similar across
segments of the population with varying capacities to fund liquidity and mo-
bility costs.

In the remainder of this section, we consider several other mechanisms that
could explain how rising temperatures affect labor reallocation, and we present
these findings in Appendix Tables B6, B7, and B8. First, we examine whether
warming has a direct impact on non-agricultural sectors. As described in Sec-
tion 2, productivity in the non-agricultural sectors could be negatively affected
by temperature, for example, through heat stress on workers (Hsiang, 2010;
Somanathan et al., 2021). Under this scenario, we would expect to see a re-
duction in demand for non-agricultural labor, and importantly, the resulting
decline in non-agricultural worker shares should be present in both rural and
urban areas. In Appendix Table B6, to test whether the above pattern ap-
pears in our context, we examine the effect of rising average temperatures on
non-agricultural worker shares separately for rural and urban areas within a
district. We find that the negative effect of rising temperatures on the share of
non-agricultural workers is concentrated in rural areas (Column 2), while the
share of non-agricultural workers in urban areas remains unaffected by rising
temperatures (Column 4). The lack of effects in urban areas suggests that
our findings cannot be explained by a direct effect of rising temperatures on
productivity in the non-agricultural sector.27

Second, if reductions in agricultural productivity under climate change
lead to land consolidation, this could mechanically result in an increase in the
share of agricultural laborers. Under this scenario, we would expect to find a
corresponding reduction in the share of cultivators. In Panel A of Appendix
Table B7, we examine the impacts of rising temperatures on cultivator share
— defined as main cultivators divided by total workers — using our panel

27The lack of effects in urban areas also helps us reconcile our findings on sectoral re-
allocation and urbanization. Recall that in Table 2, we find a negative impact of rising
temperatures on sectoral reallocation, but do not observe a similar impact on urbanization.
This can be attributed to the fact that the decline in sectoral reallocation from agriculture
to non-agriculture is driven by workers in rural areas only.
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approach. We find a positive and marginally significant effect of rising average
temperatures on the share of cultivators (Column 2). Turning to heterogeneous
impacts, the effect of rising average temperatures is positive in underdeveloped
districts with below median density road networks/bank credit per capita at
baseline (Columns 3-6). The coefficients on the interactions terms are statisti-
cally indistinguishable from zero, suggesting that there is no differential impact
of rising temperatures on the share of cultivators in districts with above me-
dian density road networks/bank credit per capita at baseline. This suggests
that cultivators are more likely to be characterized by limited occupational
and spatial mobility, even in districts with access to well-developed road net-
works and formal credit. This could be driven by distortions in land markets
(Foster and Rosenzweig, 2021; Bolhuis et al., 2021), insecure property rights
(Gottlieb and Grobovšek, 2019) or cultural norms (Fernando, 2020).

Third, rising temperatures could induce a shift in cultivation practices.
If farmers respond to reductions in agricultural productivity under climate
change by cultivating dry-season crops or by switching to more labor-intensive
crops, this would result in an increase in demand for agricultural labor. In
Appendix Table B8, we examine impacts of rising temperatures on the share
of total land cultivated with dry-season and labor-intensive crops using our
panel approach. We find that rising temperatures lead to a slight reduction
in cultivation across these two categories of crops, which suggests that our
findings are not driven by shifts in farmers’ cultivation practices.

The bulk of the empirical evidence presented in this section is consistent
with a local demand mechanism driving our labor reallocation results. To
summarize, rising temperatures reduce agricultural productivity, which sub-
sequently lowers consumption of local non-agricultural goods and services,
leading to a contraction in the non-agricultural labor share. Although these
effects are felt commonly by individuals across skill and social groups, they
are concentrated in underdeveloped areas with sparse road connectivity and/or
poor access to credit.

On a final note, we now revisit contrasting effects of short-term versus
long-term temperature shocks on labor reallocation as previously discussed in
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Section 5.1. One explanation could be that the degree to which individuals can
smooth consumption in response to income shocks depends on the time-scale
of these shocks. In particular, we posit that individuals are likely more able to
smooth their consumption in response to brief, transitory income shocks, how-
ever, they have limited capacity to do so when facing long-term productivity
shocks such as persistent warming. In our context, higher temperatures bring
minimal local demand effects as individuals successfully consumption smooth
in the short-term. Therefore, the relative labor productivity loss mechanism
dominates, and year-to-year increase in temperatures draws labor to the non-
agricultural sector on a short time-scale. However, individuals are less able to
consumption smooth in response to sustained shocks to agricultural produc-
tivity that persist over longer time-scales. Thus, when we evaluate the effects
of rising temperatures using a longer time-frame, we see that local demand
effects intensify and dwarf the labor productivity loss mechanism. This can
explain why higher decadal average temperatures lead to a reduction in the
amount of labor supplied to the non-agricultural sector on longer time-scales.

5.4 Robustness Checks

In this section, we explore the robustness of our results. First, we show that
our panel results are robust to a broader definition of the share of the labor
force who are agricultural workers. In our main analysis, we focus on agricul-
tural wage workers only. We now expand our definition to include cultivators
as well. In Panel B of Appendix Table B7, we examine the impacts of rising
temperatures on the share of agricultural laborers and cultivators — defined
as total agricultural laborers and cultivators divided by total workers — and
we find a similar positive, statistically significant effect of rising average tem-
peratures on the share of agricultural laborers and cultivators.28

Second, we test the robustness of our panel results to changes in the sam-
28Further, we find that the coefficient on decadal temperature in Column 2 of Table 2

(with agricultural labor share as the outcome) is not statistically different from that in
Column 2 of Appendix Table B7 Panel B (with agricultural labor and cultivator share as
the outcome) — the p-value is 0.202.
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ple. In our main analysis, we restrict our sample to districts for which the
dependent variable is non-missing in all years. We report results using the
full unbalanced sample in Panel A of Appendix Table B9. The estimated co-
efficients and significance levels are largely unchanged under the inclusion of
these unbalanced districts.

Third, we show that our panel results are robust to using alternative def-
initions of the temperature and precipitation measures. In defining long-run
changes in climate, we use decadal averages of temperature and precipitation,
weighted by the inverse distance of weather grids to district centroids. In
Panel B of Appendix Table B9, we show that the results also hold under an
alternate construction of the temperature and precipitation variables — here,
we take the average weather across all grid points that fall within a district’s
boundary. In Panel C of Appendix Table B9, we use logs of temperature and
precipitation instead of levels, and we find that this specification strengthens
our results.

Fourth, we explore the robustness of our results to a distributed lag model.
Our use of decadal averages is motivated by our interest in the impact of slow-
onset changes in climate. In Appendix Table B10, we present a distributed
lagged average model to explore whether our decadal results are driven mostly
by recent shocks, or whether there are persistent long-term effects of shocks
several years prior. We break down our decadal temperature measure into
three smaller averages: current temperature to two-year lagged temperature;
three-year lagged temperature to six-year lagged temperature; and seven-year
lagged temperature to nine-year lagged temperature. The results are mixed,
depending on the outcome variable. For agricultural labor share, the effects
appear to be driven by slightly older shocks (3 to 6 years), whereas for non-
agricultural worker share, the effects appear to be driven by shocks in more
recent years. Although no clear patterns emerge, Appendix Table B10 does
suggest that our decadal results are not driven solely by recent temperature
shocks.

Fifth, we show that our panel results are robust to controlling for trends
in other variables that may influence labor reallocation. More specifically, we
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re-estimate our panel specification including time-varying controls for area cul-
tivated by high-yielding varieties (a proxy for access to the Green Revolution),
a labor regulation strictness index (a proxy for flexibility in hiring workers),
a continuous road density measure, the number of markets (proxies for in-
frastructure in the district), and the number of banks (a proxy for financial
development of the district). Appendix Table B11 illustrates that our results
are robust to the inclusion of these controls — the coefficients on agricultural
labor share and non-agricultural worker share are precisely estimated and are
of similar magnitude to the coefficients in Table 2. We choose not to include
these time-varying controls in our main specification in order to avoid the
potential bias of “bad controls” — control variables that could themselves be
affected by temperature (Angrist and Pischke, 2009; Hsiang et al., 2013).

Sixth, we test the robustness of our long difference results to alternative
end points. Our long difference specification takes the difference in outcomes
between two periods: 1961–1981 and 1991–2011. Each period is composed of
three Census observations and three decadal observations for the independent
weather variables. In Appendix Table B12, we use an alternate window, tak-
ing the difference between the periods 1961–1971 and 2001–2011 — we now
average together two observations instead of three for both the Census and
weather variables. The signs and precision of the coefficients on temperature
for agricultural labor share and non-agricultural worker share are robust to
these alternative end points. Moreover, the point estimates continue to be
larger in magnitude than the point estimates in the panel specification, ruling
out potential adaptation to warming over the longer-term.

Seventh, we demonstrate that the heterogeneous impacts summarized in
Table 4 are robust to alternate thresholds for our heterogeneity dummies.
In our main specification, we define high road density and high bank credit
districts to be those whose baseline values of road density and bank credit per
capita respectively are above the median of the distribution across all districts
at baseline. We test the sensitivity of our results to two alternate thresholds —
the 40th and 60th percentiles of the distribution across all districts at baseline.
In Appendix Table B13, we find that our results are largely robust to these
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two alternate thresholds. We thus conclude that our heterogeneous impacts
are not sensitive to the choice of threshold used.

Eighth, we show that the heterogeneous impacts are also robust to the
inclusion of other baseline district-level controls interacted with temperature
and precipitation. In Appendix Tables B14 and B15, we sequentially include
controls such as baseline wages and irrigated land interacted with weather
variables to the heterogeneous specification. The stability of our coefficients of
interest as we cumulatively add these controls across the columns suggest that
the heterogeneous impacts summarized in Table 4 are not driven by factors
other than access to roads or bank credit.

6 Conclusion

As temperatures rise, agricultural productivity will decline and this may im-
pact the spatial and sectoral allocation of workers in the economy. Earlier
work on India has demonstrated that individuals do switch sectors in response
to short-term weather shocks and that such switching has important economic
benefits (Emerick, 2018; Colmer, 2021).

In this paper, we add to this base of knowledge by exploring responses
to slow-onset changes in temperature, measured using decadal averages in a
panel specification, and using changes over our entire 60-year sample in a long
differences specification. Under both specifications, we find that higher tem-
peratures inhibit structural transformation in Indian districts. This finding
has important policy implications for India and other low- and middle-income
countries. The existing climate-agronomy literature has demonstrated that
higher temperatures have severe adverse effects on crop yields and agricul-
tural incomes (Schlenker and Roberts, 2009; Taraz, 2018). We document that
sustained higher temperatures not only dramatically lower yields, but also
inhibit the movement of labor out of agriculture, potentially magnifying the
human welfare impacts of climate change.

Furthermore, we find suggestive evidence that these impacts are driven by
local demand effects and that they are concentrated in districts with sparse
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road networks or low access to formal bank credit. These results suggest
that individuals in areas with these features of underdevelopment are more
susceptible to the adverse effects of higher temperatures. Earlier research
demonstrates that social safety net programs can cushion the impact of adverse
environmental events (Deryugina, 2017; Garg et al., 2020) — this may in
turn alleviate the negative impacts on structural transformation. In a similar
vein, interventions that make agricultural incomes less susceptible to high
temperatures may also alleviate negative impacts.

Finally, our results add to the broader climate–economy literature by dem-
onstrating the importance of analyzing slow-onset changes in climate, as esti-
mates based on long-term variations in climate give a better approximation of
how agents will respond to anthropogenic climate change (Burke and Emerick,
2016). Relative to our decadal specification, our long differences specification
detects magnified adverse effects of rising temperatures on structural transfor-
mation in the long-term. This suggests that, not only do individuals fail to
adapt to higher temperatures in the medium-term, but they also endure ac-
cumulating impacts from sustained warming that renders sectoral reallocation
more challenging in the long-term. A promising avenue for future research is to
continue exploring climate impacts using slow-onset changes and long panels
of data, particularly in low- and middle-income countries that are especially
vulnerable to climate change.
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(a) Temperature (b) Precipitation (c) Agricultural Labor
Share

(d) Non-Agricultural
Worker Share

(e) Urbanization (f) Migrant Share

Figure 1: Figure illustrates long-run changes in the ten-year average of growing
season temperature (panel a), growing season precipitation (panel b), share of
agricultural laborers (panel c), share of non-agricultural workers (panel d),
urbanization (panel e), and share of intra-district migrants (panel f) across all
balanced districts. These changes are computed by subtracting the value of
each variable in 1961 from the corresponding value in 2011. Data are district-
level panel data constructed from the Indian Census.
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Table 1: Summary Statistics by Year

Year 1961 1971 1981 1991 2001 2011 Total
10-Year Avg. GS Temperature (Celsius) 23.78 23.87 23.94 23.95 24.00 24.20 23.96

(3.192) (3.268) (3.296) (3.323) (3.338) (3.312) (3.286)

10-Year Avg. GS Rainfall (100 mm) 1.283 1.164 1.314 1.192 1.154 1.189 1.216
(0.657) (0.615) (0.640) (0.633) (0.598) (0.650) (0.634)

Agricultural Labor Share 0.151 0.257 0.238 0.224 0.257 0.300 0.238
(0.103) (0.130) (0.128) (0.117) (0.131) (0.148) (0.135)

Non-Agricultural Worker Share 0.272 0.257 0.284 0.296 0.385 0.417 0.318
(0.149) (0.152) (0.157) (0.164) (0.183) (0.188) (0.176)

Urbanization 0.159 0.176 0.207 0.228 0.245 0.275 0.215
(0.139) (0.148) (0.152) (0.158) (0.168) (0.182) (0.163)

Migrant Share 0.0198 . 0.0241 0.0227 0.0221 0.0385 0.0254
(0.0163) (.) (0.0187) (0.0163) (0.0190) (0.0484) (0.0275)

Note: Table presents summary statistics for the weather variables and Census outcome variables over time for
the sample of districts for which non-agricultural worker share is non-missing for all years (N=270). Migrant
share data is unavailable for 1971.
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Table 2: Effect of Rising Temperatures Using Panel Specification

Ag Labor Share Non-Ag Worker Share Urbanization Migrant Share

(1) (2) (3) (4) (5) (6) (7) (8)
T 0.181 0.157 -0.077 -0.086 -0.021 0.001 -0.013 -0.018

(0.059)*** (0.062)** (0.033)** (0.031)*** (0.042) (0.045) (0.059) (0.064)
[0.077]** [0.076]** [0.038]** [0.035]** [0.046] [0.046] [0.062] [0.068]

P -0.153 -0.081 -0.026 -0.001 0.025 0.000 -0.016 -0.000
(0.059)** (0.060) (0.030) (0.030) (0.042) (0.044) (0.050) (0.058)
[0.098] [0.093] [0.036] [0.032] [0.044] [0.045] [0.058] [0.064]

Region-year trends Y N Y N Y N Y N
Region-year FE N Y N Y N Y N Y
Observations 1,548 1,548 1,620 1,620 1,596 1,596 1,350 1,350

Note: The dependent variable is the natural logarithm of the share of agricultural laborers in Columns
(1) and (2), of the share of non-agricultural workers in Columns (3) and (4), of urbanization rates in
Columns (5) and (6), and of the share of intra-district migrants in Columns (7) and (8). Temperature
and precipitation are decadal averages of the past ten growing seasons. Data are district-level panel data
constructed from the Indian Census. We restrict our sample to districts for which the dependent variable
is non-missing in all years. All columns include district and year fixed effects. We present standard errors
clustered by district in parentheses, and Conley standard errors that allow for spatial correlation up to
500km and arbitrary serial correlation in brackets.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 3: Effect of Rising Temperatures Using Long Difference Specification

Ag Labor Share Non-Ag Worker Share Urbanization Migrant Share
(1) (2) (3) (4)

T 0.3819 -0.1491 -0.0434 -0.1716
(0.0995)*** (0.0531)*** (0.0827) (0.1619)
[0.2292]* [0.0621]** [0.1569] [0.2092]

P 0.3256 0.0202 -0.2617 0.0350
(0.2236) (0.1080) (0.1830) (0.4016)
[0.4429] [0.0777] [0.1494]* [0.5837]

Region FE Y Y Y Y
Observations 258 270 266 267

Note: The dependent variable in each column is the difference (in natural logarithm) of
an outcome between two 30-year periods, 1961-1981 and 1991-2011. The outcomes are
the share of agricultural laborers in Column (1), the share of non-agricultural workers in
Column (2), urbanization rates in Column (3), and the share of intra-district migrants in
Column (4). The independent variables are differences in average growing-season tem-
perature and precipitation over the same time periods. Data are district-level data con-
structed from the Indian Census. All columns include region fixed effects. We present
standard errors in parentheses, and Conley standard errors that allow for spatial corre-
lation up to 500km and arbitrary serial correlation in brackets.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4: Heterogeneous Effects of Rising Temperatures by Road Network Density & Bank Credit per Capita

Ag Labor Share Non-Ag Worker Share Urbanization Migrant Share

Panel A: Road Network Density (1) (2) (3) (4) (5) (6) (7) (8)
T 0.322 0.355 -0.104 -0.137 -0.193 -0.190 -0.102 -0.149

(0.091)*** (0.099)*** (0.055)* (0.058)** (0.076)** (0.083)** (0.072) (0.078)*
[0.108]*** [0.118]*** [0.054]* [0.052]*** [0.067]*** [0.068]*** [0.074] [0.075]**

T x High Road Density -0.320 -0.362 0.094 0.119 0.222 0.231 0.188 0.227
(0.110)*** (0.114)*** (0.070) (0.068)* (0.092)** (0.098)** (0.104)* (0.108)**
[0.125]** [0.128]*** [0.068] [0.062]* [0.081]*** [0.084]*** [0.098]* [0.100]**

Region-year trends Y N Y N Y N Y N
Region-year FE N Y N Y N Y N Y
P-val of sum, cluster 0.974 0.919 0.827 0.633 0.613 0.511 0.269 0.347
P-val of sum, Conley 0.978 0.929 0.860 0.665 0.632 0.519 0.285 0.340
Observations 1,458 1,458 1,458 1,458 1,452 1,452 1,210 1,210

Panel B: Bank Credit Per Capita (1) (2) (3) (4) (5) (6) (7) (8)
T 0.288 0.271 -0.147 -0.157 -0.064 -0.042 0.012 -0.013

(0.067)*** (0.070)*** (0.054)*** (0.048)*** (0.067) (0.069) (0.066) (0.069)
[0.083]*** [0.082]*** [0.066]** [0.062]** [0.071] [0.068] [0.086] [0.084]

T x High Bank Credit -0.210 -0.217 0.108 0.106 0.032 0.030 -0.041 -0.029
(0.109)* (0.110)** (0.065)* (0.059)* (0.086) (0.087) (0.099) (0.099)
[0.108]* [0.111]* [0.072] [0.066] [0.080] [0.078] [0.116] [0.114]

Region-year trends Y N Y N Y N Y N
Region-year FE N Y N Y N Y N Y
P-val of sum, cluster 0.389 0.558 0.328 0.181 0.556 0.826 0.726 0.632
P-val of sum, Conley 0.418 0.580 0.298 0.124 0.515 0.808 0.738 0.652
Observations 1,548 1,548 1,620 1,620 1,596 1,596 1,350 1,350

Note: The dependent variable is the natural logarithm of the share of agricultural laborers in Columns (1) and (2), of the share of non-
agricultural workers in Columns (3) and (4), of urbanization rates in Columns (5) and (6), and of the share of intra-district migrants in
Columns (7) and (8). Temperature and precipitation are decadal averages of the past ten growing seasons. Data are district-level panel
data constructed from the Indian Census. Panel A explores heterogeneous effects by road network density; High Road Density is a bi-
nary variable that takes the value 1 if the district has above median road density at baseline. All columns include district, year and high
road density-by-year fixed effects, as well as controls for decadal precipitation and decadal precipitation interacted with the road density
dummy. Panel B explores heterogeneous effects by bank credit per capita; High Bank Credit is a binary variable that takes the value 1
if the district has above median bank credit per capita at baseline. All columns include district, year and high bank credit-by-year fixed
effects, as well as controls for decadal precipitation and decadal precipitation interacted with the bank credit dummy. We restrict our
sample to districts for which road density/bank credit data is non-missing and the dependent variable is non-missing in all years. We
present standard errors clustered by district in parentheses, and Conley standard errors that allow for spatial correlation up to 500km
and arbitrary serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5: Effect of Rising Temperatures on Consumption and Sectoral Worker Shares

Total Food Non-Food

Panel A: Consumption (1) (2) (3) (4) (5) (6)
T -0.096 -0.091 -0.069 -0.071 -0.113 -0.122

(0.031)*** (0.033)*** (0.025)*** (0.027)*** (0.046)** (0.050)**
[0.039]** [0.035]*** [0.031]** [0.031]** [0.053]** [0.053]**

P 0.064 0.063 0.004 0.001 0.112 0.127
(0.048) (0.052) (0.039) (0.045) (0.073) (0.078)
[0.052] [0.056] [0.042] [0.047] [0.083] [0.092]

Region-year trends Y N Y N Y N
State-year trends N Y N Y N Y
Observations 1,590 1,590 1,590 1,590 1,590 1,590

Services Construction Manufacturing

Panel B: Non-ag sectoral share (1) (2) (3) (4) (5) (6)
T -0.139 -0.260 0.040 -0.132 -0.006 -0.151

(0.070)** (0.073)*** (0.181) (0.198) (0.102) (0.117)
[0.091] [0.090]*** [0.231] [0.196] [0.122] [0.126]

P 0.071 0.180 0.024 0.383 0.077 0.235
(0.095) (0.102)* (0.381) (0.418) (0.160) (0.183)
[0.129] [0.145] [0.379] [0.411] [0.181] [0.225]

Region-year trends Y N Y N Y N
State-year trends N Y N Y N Y
Observations 2,120 2,120 2,120 2,120 2,120 2,120

Note: The dependent variable in Panel A is the natural logarithm of the district average per capita annual total consumption in
Columns (1) and (2), of annual food consumption in Columns (3) and (4), and of annual non-food consumption in Columns (5)
and (6). The dependent variable in Panel B is the natural logarithm of the share of workers engaged in services in Columns (1)
and (2), of the share of workers engaged in construction in Columns (3) and (4), and of the share of workers engaged in manu-
facturing in Columns (5) and (6). Temperature and precipitation are decadal averages of the past ten growing seasons. Data are
district-level panel data aggregated from the National Sample Survey. For both panels, we restrict our sample to districts for which
the dependent variable is non-missing in all years. In addition, we restrict our sample to districts with non-missing observations of
non-agricultural shares across all years in the PCA data. All columns include district and year fixed effects. We present standard
errors clustered by district in parentheses, and Conley standard errors that allow for spatial correlation up to 500km and arbitrary
serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 6: Heterogeneous Effects of Rising Temperatures by Social Grouping and Education

Non-scheduled caste/tribe Scheduled caste/tribe

Ag Worker Share Non-Ag Worker Share Ag Worker Share Non-Ag Worker Share

Panel A: By social grouping (1) (2) (3) (4) (5) (6) (7) (8)
T 0.305 0.252 -0.087 -0.206 0.405 0.397 -0.161 -0.327

(0.075)*** (0.085)*** (0.065) (0.065)*** (0.129)*** (0.108)*** (0.097)* (0.090)***
[0.090]*** [0.088]*** [0.088] [0.081]** [0.149]*** [0.121]*** [0.107] [0.090]***

P -0.056 0.032 -0.097 0.027 0.026 -0.024 -0.110 0.082
(0.232) (0.165) (0.083) (0.090) (0.154) (0.137) (0.136) (0.144)
[0.238] [0.174] [0.113] [0.128] [0.159] [0.150] [0.142] [0.155]

Region-year trends Y N Y N Y N Y N
State-year trends N Y N Y N Y N Y
Observations 2,120 2,120 2,120 2,120 2,120 2,120 2,120 2,120

Primary school or above Below primary school

Ag Worker Share Non-Ag Worker Share Ag Worker Share Non-Ag Worker Share

Panel B: By education (1) (2) (3) (4) (5) (6) (7) (8)
T 0.262 0.297 -0.028 -0.155 0.238 0.224 -0.194 -0.311

(0.072)*** (0.073)*** (0.052) (0.050)*** (0.068)*** (0.054)*** (0.078)** (0.078)***
[0.091]*** [0.087]*** [0.069] [0.068]** [0.080]*** [0.068]*** [0.104]* [0.087]***

P 0.028 0.019 -0.010 0.105 0.018 -0.005 -0.032 0.125
(0.147) (0.144) (0.073) (0.076) (0.113) (0.131) (0.126) (0.122)
[0.179] [0.179] [0.096] [0.107] [0.122] [0.135] [0.147] [0.157]

Region-year trends Y N Y N Y N Y N
State-year trends N Y N Y N Y N Y
Observations 2,120 2,120 2,120 2,120 2,120 2,120 2,120 2,120

Note: The dependent variable is the natural logarithm of the share of agricultural workers in Columns (1), (2), (5) and (6), and of the share of non-
agricultural workers in Columns (3), (4), (7) and (8), within the specified social or education group. Temperature and precipitation are decadal averages of
the past ten growing seasons. Data are district-level panel data aggregated from the National Sample Survey. We restrict our sample to districts for which
the dependent variable is non-missing in all years. In addition, we restrict our sample to districts with non-missing observations of non-agricultural shares
in all years in the PCA data. All columns include district and year fixed effects. We present standard errors clustered by district in parentheses, and Conley
standard errors that allow for spatial correlation up to 500km and arbitrary serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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A Theoretical Framework

We develop a simple general equilibrium model of sectoral allocation with
three sectors and two regions. We have two goals in developing this model.
First, we want to demonstrate that adverse shocks to agricultural productivity
can decrease the allocation of labor to the non-agricultural sector via local
demand effects. Second, we want to show that high transportation costs can
intensify this effect. We develop a model in the spirit of the model developed in
Gollin and Rogerson (2014).29 More broadly, the mechanisms underlying our
theoretical model are similar to the mechanisms in many models of structural
transformation (Matsuyama, 1992; Kongsamut et al., 2001; Gollin et al., 2002;
Gollin and Rogerson, 2014; Herrendorf et al., 2014; Bustos et al., 2016).

Our model features three sectors: the agricultural sector (denoted by A),
the manufacturing sector (M), and the service sector (S). There are two
regions: the rural region (R) which produces agriculture and services, and the
urban region (U) which produces manufacturing and services. Services are not
tradable between the regions, but agricultural and manufacturing goods can
be traded. We assume iceberg transportation costs of size q for the agricultural
good only. Specifically, we assume that if one unit of the agricultural good is
transported to the urban region, there will be fractional losses q so that only
(1 − q) units will be received.

Individuals in both regions have Stone-Geary preferences over the three
goods, which, for tractability, we assume are of the form:

u(cA, cM , cS) = ln(cA − ā) + ln(cM − m̄) + ln(cS)

We assume that ā > 0, so that the income elasticity of the agricultural good
is less than one. Labor is the only input for all three sectors. Each region has
one unit of available labor, and the labor in region J devoted to sector I is

29Our model differs in three important ways from the model developed in Gollin and
Rogerson (2014): we model one rural region instead of two; we shut down migration between
the regions; and we model a (non-tradable) service sector in addition to the agricultural and
manufacturing sectors.
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denoted by LJI . Urban labor is divided between manufacturing and services
so that LUM + LUS = 1, and all agricultural goods consumed in the urban
region are imported from the rural region. In the rural region, labor is divided
between the agricultural and services sectors, so that LRA + LRS = 1 and all
manufacturing goods consumed in the rural region are imported from the
urban region. We abstract away from the possibility of migration between
regions. The production function of the agricultural sector in the rural region
is given by:

Y R
A = θRA(LRA)β = θRA(1 − LRS )β

where θRA is rural agricultural total factor productivity and β is the elasticity
of output with respect to labor. We assume that β < 1.

In the context of our study, shocks to θRA will be driven by higher temper-
atures. The dependence of agricultural productivity on temperature is well-
documented in the empirical literature (Schlenker and Roberts, 2009; Dell
et al., 2012; Taraz, 2018). We note that in the Indian context, there is also
empirical evidence that higher temperatures reduce non-agricultural produc-
tivity (Somanathan et al., 2021), but these reductions are smaller in magnitude
relative to impacts on agricultural productivity (Jain et al., 2020).30

The output of the manufacturing sector in the urban region is given by:

Y U
M = θUML

U
M = θUM(1 − LUS )

The output of the service sector in each region is given by:

Y J
S = θJSL

J
S

where θJS is the service sector total factor productivity in region J . We further
assume that θRS = 1.

To solve for the competitive equilibrium of our model, we note that our
model contains no externalities and hence we can apply the First Welfare

30This India-specific evidence is consistent with cross-country evidence that the agricul-
tural sector is more sensitive to higher temperatures than the non-agricultural sector in poor
countries, but that both respond negatively to higher temperatures (Dell et al., 2012).
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Theorem. In other words, the competitive equilibrium will be the same as
the solution to the Social Planner’s problem, and that is what we will solve
for, applying equal weights to each region. The maximization problem for the
social planner is given by:

max
cRA,c

U
A,c

R
M ,cUM ,cRS ,c

U
S ,L

R
S ,L

U
S

ln(cRA−ā)+ln(cRM−m̄)+ln(cRS )+ln(cUA−ā)+ln(cUM−m̄)+ln(cUS )

where cJI be the consumption of good I in region J . This maximization problem
is subject to the following four feasibility constraints:

cUA
(1 − q)

+ cRA =θRA(1 − LRS )β (A1)

cUM + cRM =θUM(1 − LUS ) (A2)

cRS =LRS (A3)

cUS =θUSL
U
S (A4)

Equation (A1) states that the sum of agricultural consumption in the urban
region (factoring in transportation costs) and rural region must equal the out-
put of the agricultural sector in the rural region. Equation (A2) states that
the total manufacturing consumption across both regions must be equal to
the manufacturing output of the urban region. Equations (A3) and (A4) state
that service consumption in each region must equal service production in that
same region, since services are not tradable.

Substituting Equations (A3) and (A4) into the maximization problem, we
get a simplified maximization that is subject to Equations (A3) and (A4) only:

max
cRA,c

U
A,c

R
M ,cUM ,LR

S ,L
U
S

ln(cRA−ā)+ln(cRM−m̄)+ln(θRSL
R
S )+ln(cUA−ā)+ln(cUM−m̄)+ln(θUSL

U
S )

Manipulating the first order constraints of this maximization problem, we
are able to solve for the following expressions for the rural and urban con-
sumption bundles:
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cRA =
θRA(1 − LRS )β(1 − q) − āq

2(1 − q)

cUA =
θRA(1 − LRS )β(1 − q) + āq

2

cUM =cRM =
θUM(1 − LUS )

2

We can then write a further simplified version of the Social Planner’s Problem,
by substituting in these expressions for cMA , cSA, cUA, and cUS :

max
LR
S ,L

U
S

ln

(
θRA(1 − LRS )β(1 − q) − (2 − q)ā

2(1 − q)

)
+ ln

(
θUM − θUML

U
S − 2m̄

2

)
+ ln

(
LRS

)
+ ln

(
θRA(1 − LRS )β(1 − q) − (2 − q)ā

2

)
+ ln

(
θUM − θUML

U
S − 2m̄

2

)
+ ln

(
θUSL

U
S

)
Using the rule for a logarithm of a quotient, we can simplify this maximization
problem to:

max
LR
S ,L

U
S

2ln
(
θRA(1 − LRS )β(1 − q) − (2 − q)ā

)
+ 2ln

(
θUM − θUML

U
S − 2m̄

)
+ ln

(
LRS

)
+ ln

(
θUSL

U
S

)
− ln(1 − q)

Next, we take for the first order conditions for LRS and we get:

−2β(1 − q)θRA(1 − LRS )β−1

θRA(1 − LRS )β(1 − q) − (2 − q)ā
+

1

LRS
= 0

Manipulating this expression, we get

(1 − LRS )β(1 − q) − 2β(1 − q)(1 − LRS )β−1LRS =
ā(2 − q)

θRA
(A5)

Now, we can solve for the comparative statics of interest. First, we can solve
for the impact of a change in agricultural productivity on rural labor supply
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to the service sector. Taking the implicit derivative of Equation (A5) with
respect to agricultural productivity θRA and rearranging terms, we get:

δLRS
δθRA

=
ā(2 − q)

(θRA)2(1 − q)
× 1

3β(1 − LRS )β−1 + 2β(1 − β)(1 − LRS )β−2LRS
(A6)

We can now determine the sign of the expression on the right-hand side of
Equation (A6). We have assumed that ā > 0 and q < 1, so the numerator
of the fraction is positive. We have also assumed that β < 1, and LRS < 1,

so the denominator is also positive. Therefore we have shown that
δLRS
δθRA

> 0,

which means that an increase in agricultural productivity triggers an increase
of labor allocated to the service sector (and hence decrease labor supply to the
agricultural sector). Conversely, an adverse shock to agricultural productivity
will decrease rural service sector employment and increase rural agricultural
labor supply.

In addition to the direct effect of agricultural productivity shocks on non-
agricultural labor supply, we are also interested in the role of transportation
costs in modulating this relationship. Looking at Equation (A6), we note that
increasing q (in the range 0 < q < 1) will increase the right-hand side of

Equation (A6), and hence
δ2LRS
δθRAδq

> 0, which means that places with higher

transportation costs will face intensified local demand effects.
It is worth noting two important limitations of our model. First, our model

does not allow for migration between rural and urban regions. This assumption
may be reasonable in short-term, since the costs of seasonal migration in India
is high and workers prefer local public works to migration (Imbert and Papp,
2020). In the medium- to long-term, the level of within-district migration in
India is also very low (Kone et al., 2018). Nevertheless, the implications of our
model should be caveated when applied to other contexts with higher levels of
cross-region migration. On the one hand, local demand effects could be damp-
ened as cross-region migration arbitrages away the difference in agricultural
productivity shocks. On the other hand, spatial linkages created by migration
could expose regions unaffected by rising temperatures to agricultural risks
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elsewhere.
Second, our set-up does not allow for multiple periods, and therefore it can-

not provide comparisons of the short- and long-term effects. Without formally
modeling multiple periods, the predictions from the above model can be taken
as short-term dynamics. To gauge possible intensification or adaptation effects
in the longer-term, we posit two possible extensions to the model. The first
is to introduce liquidity and mobility costs, which may intensify the effects of
rising temperatures over time. If farmers’ agricultural incomes are stochastic,
it follows that a short duration of high temperatures will reduce farm income,
which renders the costs of switching sectors infeasible for a relatively small
fraction of farmers. However, a longer period of sustained high temperatures
will lead to long-lasting farm income reductions, leaving a much greater frac-
tion of the population not able to afford the liquidity and mobility costs. A
second possible extension is to consider costly investment in human capital.
Under this set-up, warming affects not only the affordability of switching sec-
tors for current workers, but also the human capital investments of future
workers. A growing literature documents that high temperatures have nega-
tive and persistent impacts on human capital.31 It may be the case that the
adverse impacts of warming on structural transformation in the short-term
can be compounded by the dampening of human capital accumulation in the
longer-term.

31For example, Garg et al. (2020) find that higher temperatures in India reduce contem-
poraneous human capital due to an agricultural income channel. Fishman et al. (2019)
find that high temperatures in Ecuador around the time at birth have long-term effects on
human capital and earnings productivity that persist into adulthood; Hu and Li (2019) find
similar effects looking at China.
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B Appendix Figures and Tables

(a) Consistent district boundaries, 1961-2011

(b) Districts, by region

Figure B1: Figure illustrates the 288 consistent district boundaries over 1961-
2011 (panel a), and the 287 districts by region used in the analysis (panel b).
Lakshadweep is dropped due to lack of weather records. We classify districts
into six regions based on the Government of India’s administrative regional
classification.
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(a) Histogram

(b) Spatial Distribution

Figure B2: Figure plots the road density (km/km2) measure across all districts
in panel a, and illustrates the distribution of the same measure across space in
panel b. The solid vertical line in panel a denotes the median of the distribution
(0.10 km/km2).

54



(a) Histogram

(b) Spatial Distribution

Figure B3: Figure plots the bank credit per capita (Rupees) measure across
all districts in panel a, and illustrates the distribution of the same measure
across space in panel b. The solid vertical line in panel a denotes the median
of the distribution (19 Rupees).
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Figure B4: Figure plots the relationship between long-run changes in non-
agricultural worker share and changes in 10-year average growing season tem-
perature between 1961 and 2011. Data comes from district-level panel data
constructed from the Indian Census. Each dot represents a district in our
sample. For each district, we take the difference in the ten-year average grow-
ing season temperature between 1961 and 2011, as well as the difference in
the natural log of the non-agricultural worker share between 1961 and 2011,
and plot them against one another. Fitted linear regression lines and 95%
confidence intervals are presented along with the scatter plots.
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Table B1: Summary Statistics by Year

Year 1987-88 1993-94 1999-2000 2004-05 2005-06 2007-08 2009-10 2011-12
NSS Round 43 50 55 61 62 64 66 68 Total
10-Year Avg. GS Temperature (Celsius) 23.95 23.95 23.92 24.04 24.09 24.16 24.17 24.22 24.06

(3.311) (3.322) (3.352) (3.337) (3.347) (3.320) (3.303) (3.309) (3.322)

10-Year Avg. GS Rainfall (100 mm) 1.306 1.167 1.171 1.141 1.114 1.135 1.144 1.170 1.168
(0.637) (0.634) (0.603) (0.597) (0.602) (0.621) (0.634) (0.651) (0.624)

Agricultural Worker Share 0.543 0.650 0.545 0.472 0.382 0.505 0.390 0.363 0.481
(0.172) (0.218) (0.177) (0.124) (0.150) (0.153) (0.122) (0.120) (0.183)

Non-Agricultural Worker Share 0.371 0.311 0.421 0.491 0.572 0.455 0.580 0.606 0.476
(0.161) (0.209) (0.163) (0.112) (0.146) (0.145) (0.117) (0.113) (0.179)

Manufacturing Worker Share 0.0993 0.0818 0.0998 0.119 0.144 0.106 0.114 0.121 0.111
(0.0644) (0.0710) (0.0673) (0.0634) (0.0845) (0.0698) (0.0674) (0.0661) (0.0716)

Services Worker Share 0.220 0.192 0.273 0.307 0.357 0.264 0.347 0.336 0.287
(0.105) (0.145) (0.113) (0.0808) (0.0992) (0.0975) (0.0865) (0.0879) (0.118)

Construction Worker Share 0.0448 0.0294 0.0419 0.0574 0.0611 0.0767 0.110 0.112 0.0667
(0.0562) (0.0262) (0.0280) (0.0289) (0.0320) (0.0458) (0.0596) (0.0506) (0.0516)

Note: Table presents summary statistics for the weather variables and National Sample Survey outcome variables over time for the sam-
ple of districts used in regression analysis — this include districts with non-missing observations of non-agricultural shares in all years
in the PCA data (N=270). The 50th round in 1993-1994 has incomplete coverage of the urban population — only a quarter of the dis-
tricts have their urban households represented in the survey. Therefore, the district-level summary statistics in 1993-1994 have relatively
higher shares of agricultural workers, and lower shares of non-agricultural workers, compared to those in other rounds.
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Table B2: Effect of Rising Temperatures on Primary and Secondary Occupations

Agricultural Labor Share

Total Main Marginal

Panel A: Main and Marginal Employment in Census (1) (2) (3) (4) (5) (6)
T 0.198 0.176 0.155 0.143 0.518 0.473

(0.069)*** (0.073)** (0.069)** (0.072)** (0.128)*** (0.136)***
[0.088]** [0.089]** [0.097] [0.092] [0.219]** [0.214]**

P -0.086 -0.051 0.011 0.060 -0.088 -0.016
(0.070) (0.072) (0.067) (0.065) (0.125) (0.124)
[0.103] [0.106] [0.101] [0.097] [0.243] [0.231]

Region-year trends Y N Y N Y N
Region-year FE N Y N Y N Y
Observations 1,290 1,290 1,290 1,290 1,290 1,290

Ag Worker Share Non-Ag Worker Share

Primary Occupation Secondary Occupation Primary Occupation Secondary Occupation

Panel B: Primary and Secondary Employment in NSS (1) (2) (3) (4) (5) (6) (7) (8)
T 0.191 0.213 0.211 0.132 -0.076 -0.202 -0.335 -0.223

(0.061)*** (0.054)*** (0.079)*** (0.080)* (0.067) (0.062)*** (0.166)** (0.181)
[0.074]*** [0.070]*** [0.082]** [0.082] [0.085] [0.071]*** [0.177]* [0.187]

P -0.086 -0.110 0.079 0.042 -0.058 0.073 -0.341 -0.184
(0.119) (0.096) (0.086) (0.101) (0.093) (0.098) (0.210) (0.230)
[0.137] [0.126] [0.095] [0.099] [0.125] [0.140] [0.221] [0.238]

Region-year trends Y N Y N Y N Y N
State-year trends N Y N Y N Y N Y
Observations 2,120 2,120 2,072 2,072 2,120 2,120 2,072 2,072

Note: The dependent variables in Panel A are the natural logarithm of the shares of total agricultural laborers (columns 1-2), of main agricultural laborers (columns 3-4), and of
marginal agricultural laborers (columns 5-6). Temperature and precipitation are decadal averages of the past ten growing seasons. The sample in Panel A comes from district-
level data constructed from the Indian Census. The sample is restricted to districts for which the dependent variable is non-missing in all years, and excludes data from 1991 as
counts of main and marginal agricultural workers are not available in that year. The dependent variables in Panel B are the natural logarithm of the share of workers engaged in
agriculture as a primary occupation (columns 1-2), engaged in agriculture as a secondary occupation (columns 3-4), engaged in non-agriculture as a primary occupation (columns
5-6), and engaged in non-agriculture as a secondary occupation (columns 7-8). The sample in Panel B comes from district-level data aggregated from the National Sample Survey.
The sample is restricted to districts for which i) the dependent variables are non-missing in all years in the NSS data, and ii) the non-agricultural share variable is non-missing
across all years in the PCA data. All columns in both panels include district and year fixed effects. We present standard errors clustered by district in parentheses, and Conley
standard errors in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B3: Heterogeneous Effect of Rising Temperatures by Long-Run Temperature

Ag Labor Share Non-Ag Worker Share Urbanization Migrant Share

(1) (2) (3) (4) (5) (6) (7) (8)
T x Less Hot District 0.156 0.170 -0.049 -0.071 0.036 0.050 -0.078 -0.103

(0.088)* (0.090)* (0.047) (0.044) (0.058) (0.060) (0.070) (0.074)
[0.114] [0.110] [0.050] [0.048] [0.062] [0.058] [0.066] [0.066]

T x Hot District 0.239 0.203 -0.097 -0.079 -0.047 -0.043 0.082 0.103
(0.087)*** (0.089)** (0.044)** (0.042)* (0.064) (0.069) (0.101) (0.103)
[0.088]*** [0.087]** [0.048]** [0.041]* [0.060] [0.063] [0.102] [0.104]

Region-year trends Y N Y N Y N Y N
Region-year FE N Y N Y N Y N Y
Observations 1,548 1,548 1,620 1,620 1,596 1,596 1,350 1,350

Note: The dependent variable is the natural logarithm of the share of agricultural laborers in Columns (1)
and (2), of the share of non-agricultural workers in Columns (3) and (4), of urbanization rates in Columns
(5) and (6), and of the share of intra-district migrants in Columns (7) and (8). Temperature is the decadal
average of the past ten growing seasons. “Hot District” is a binary variable that takes the value 1 if a dis-
trict’s average growing season temperature for the period 1901-2014 is above the median for that period;
“Less Hot District” takes the value 1 if a district’s average temperature for 1901-2014 is below the median.
Data are district-level panel data constructed from the Indian Census. We restrict our sample to districts for
which the dependent variable is non-missing in all years. All columns include district fixed effects and year
fixed effects and control for decadal precipitation interacted with the hot and less hot district dummies. We
present standard errors clustered by district in parentheses, and Conley standard errors that allow for spatial
correlation up to 500km and arbitrary serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B4: Effect of Rising Temperatures using National Sample Survey

Ag Worker Share Non-Ag Worker Share

Panel A: Panel specification (1) (2) (3) (4)
T (Decadal Average) 0.283 0.281 -0.122 -0.248

(0.063)*** (0.059)*** (0.065)* (0.061)***
[0.083]*** [0.077]*** [0.087] [0.074]***

P (Decadal Average) -0.014 -0.023 -0.048 0.103
(0.133) (0.146) (0.094) (0.096)
[0.154] [0.161] [0.122] [0.135]

Region-year trends Y N Y N
State-year trends N Y N Y
Observations 2,120 2,120 2,120 2,120

Panel B: Short and long-term effects (1) (2) (3) (4)
Current Year T -0.086 -0.061 0.122 0.099

(0.025)*** (0.030)** (0.023)*** (0.024)***
[0.032]*** [0.037]* [0.033]*** [0.032]***

Decadal Average T 0.285 0.270 -0.123 -0.239
(0.063)*** (0.061)*** (0.063)* (0.061)***
[0.080]*** [0.075]*** [0.078] [0.069]***

Region-year trends Y N Y N
State-year trends N Y N Y
Observations 2,120 2,120 2,120 2,120

Note: The dependent variable is the natural logarithm of the share of individuals en-
gaged in agriculture in Columns (1) and (2), and of the share of individuals engaged in
non-agricultural sectors in Columns (3) and (4). Data are district-level panel data ag-
gregated from the National Sample Survey. In panel A, temperature and precipitation
measures are decadal averages of the past ten growing seasons, and in Panel B, they are
current growing season monthly averages and decadal averages of the past ten growing
seasons. All columns include district and year fixed effects. We restrict our sample to
districts for which the dependent variable is non-missing in all years. In addition, we
restrict our sample to districts with non-missing observations of non-agricultural shares
across all years in the PCA data. We present standard errors clustered by district in
parentheses, and Conley standard errors that allow for spatial correlation up to 500km
and arbitrary serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B5: Effect of Rising Temperatures on Agricultural Yields

Agricultural Yields

Panel A: Main Effects (1) (2)
T -0.0840 -0.0606

(0.0173)*** (0.0115)***
[0.0205]*** [0.0203]***

P 0.0906 0.1506
(0.0115)*** (0.0133)***
[0.0145]*** [0.0142]***

Region-time trends Y N
Region-decade FE N Y
Observations 11,860 11,860

Panel B: By Road Density (1) (2)
T -0.094 -0.088

(0.022)*** (0.022)***
[0.025]*** [0.024]***

T x High Road Density 0.010 0.006
(0.025) (0.025)
[0.028] [0.027]

Region-year trends Y N
Region-decade FE N Y
P-val of sum, cluster 0.0001 0.0001
P-val of sum, Conley 0.0009 0.0012
Observations 11,860 11,860

Panel C: By Bank Credit per Capita (1) (2)
T -0.101 -0.096

(0.017)*** (0.017)***
[0.021]*** [0.021]***

T x High Bank Credit 0.032 0.031
(0.025) (0.024)
[0.025] [0.024]

Region-year trends Y N
Region-decade FE N Y
P-val of sum, cluster 0.0047 0.0084
P-val of sum, Conley 0.0084 0.0129
Observations 11,860 11,860

Note: The dependent variable is the natural logarithm of aggre-
gate yields. Temperature and precipitation are annual averages
over the growing season months. We use annual data from VDSA
spanning 1966 to 2010. All columns include district and year
fixed effects. Panels B and C control for precipitation and pre-
cipitation interacted with the heterogeneity measure. We present
standard errors clustered by district in parentheses, and Conley
standard errors that allow for spatial correlation up to 500km
and arbitrary serial correlation in brackets. * p < 0.10, ** p <
0.05, *** p < 0.01
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Table B6: Effect of Rising Temperatures on Rural & Urban Non-Agricultural
Worker Share

Non-Agricultural Worker Share

Rural Urban

(1) (2) (3) (4)
T -0.084 -0.106 -0.007 -0.016

(0.040)** (0.038)*** (0.011) (0.012)
[0.060] [0.055]* [0.017] [0.016]

P -0.015 0.014 -0.031 -0.009
(0.042) (0.043) (0.014)** (0.014)
[0.061] [0.055] [0.014]** [0.014]

Region-year trends Y N Y N
Region-year FE N Y N Y
Observations 1,608 1,608 1,596 1,596

Note: The dependent variable is the natural logarithm of the share of ru-
ral non-agricultural workers in Columns (1) and (2), and the natural loga-
rithm of the share of urban non-agricultural workers in Columns (3) and (4).
Temperature and precipitation are decadal averages of the past ten growing
seasons. Data are district-level panel data constructed from the Indian Cen-
sus. We restrict our sample to districts for which the dependent variable is
non-missing in all years. All columns include district and year fixed effects.
We present standard errors clustered by district in parentheses, and Conley
standard errors that allow for spatial correlation up to 500km and arbitrary
serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B7: Effect of Rising Temperatures on Cultivator & Agricultural Worker Share

Panel A: Cultivator Share (1) (2) (3) (4) (5) (6)
T 0.090 0.116 0.036 0.075 0.077 0.105

(0.071) (0.074) (0.055) (0.057) (0.039)** (0.039)***
[0.060] [0.059]** [0.053] [0.051] [0.043]* [0.037]***

T x High Road Density 0.006 -0.013
(0.074) (0.074)
[0.066] [0.063]

T x High Bank Credit -0.008 -0.018
(0.113) (0.114)
[0.099] [0.100]

P-val of sum, cluster 0.445 0.264 0.546 0.444
P-val of sum, Conley 0.438 0.226 0.451 0.343
Observations 1,620 1,620 1,620 1,620 1,620 1,620

Panel B: Ag Labor + Cultivator Share
T 0.072 0.093 0.083 0.121 0.115 0.141

(0.036)** (0.038)** (0.045)* (0.048)** (0.039)*** (0.039)***
[0.043]* [0.045]** [0.038]** [0.038]*** [0.049]** [0.049]***

T x High Road Density -0.037 -0.066
(0.061) (0.062)
[0.048] [0.048]

T x High Bank Credit -0.094 -0.103
(0.062) (0.060)*
[0.062] [0.058]*

Region-year trends Y N Y N Y N
Region-year FE N Y N Y N Y
P-val of sum, cluster 0.303 0.231 0.690 0.481
P-val of sum, Conley 0.271 0.170 0.703 0.498
Observations 1,548 1,548 1,548 1,548 1,548 1,548

Note: The dependent variable is the natural logarithm of the share of cultivators in Panel A, and of the share of agricul-
tural workers (agricultural laborers and cultivators) in Panel B. Temperature is the decadal average of the past ten growing
seasons. All columns include district and year fixed effects. We restrict our sample to districts for which the dependent
variable is non-missing in all years. High Road Density is a binary variable that takes the value 1 if the district has above
median road density at baseline. High Bank Credit is a binary variable that takes the value 1 if the district has above me-
dian bank credit per capita at baseline. Data are district-level panel data constructed from Indian Census. Columns (1)
and (2) control for decadal precipitation. Columns (3) and (4) control for decadal precipitation interacted with the high
road density dummy and include high road density-by-year fixed effects. Columns (5) and (6) control for decadal precipita-
tion interacted with the high bank credit dummy and include high bank credit-by-year fixed effects. We present standard
errors clustered by district in parentheses, and Conley standard errors that allow for spatial correlation up to 500km and
arbitrary serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B8: Effect of Rising Temperatures on Crop Area Shares

Dry Season Crop Area Labor-Intensive Crop Area

(1) (2) (3) (4)
T -0.0038 -0.0040 -0.0094 -0.0079

(0.0027) (0.0017)** (0.0030)*** (0.0019)***
[0.0035] [0.0035] [0.0041]** [0.0041]***

P 0.0078 0.0074 0.0104 0.0061
(0.0021)*** (0.0019)*** (0.0027)*** (0.0020)***
[0.0028]*** [0.0028]** [0.0041]** [0.0042]**

Region-year trends Y N Y N
Region-decade FE N Y N Y
Observations 11,705 11,705 11,705 11,705

Note: The dependent variable is the share of crop area planted with dry sea-
son crops in Columns (1) and (2), and the share of crop area planted with
labor-intensive crops in Columns (3) and (4). Temperature and precipitation
are decadal averages of the past ten growing seasons. We use annual data
from VDSA spanning 1966 to 2010. The dry season (rabi) crops are wheat,
pearl millet, barley, chickpea, pigeon pea, rapeseed and mustard seed, lin-
seed, and sunflower. The labor-intensive crops are defined to be those that
require 700 or more average person-hours per hectare, which are rice, ground-
nut, cotton, and sugarcane (FICCI, 2015). All columns include district and
year fixed effects. We present standard errors clustered by district in paren-
theses, and Conley standard errors that allow for spatial correlation up to
500km and arbitrary serial correlation in brackets. * p < 0.10, ** p < 0.05,
*** p < 0.01
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Table B9: Robustness to Alternate Samples and Variable Definitions

Ag Labor Share Non-Ag Worker Share Urbanization Migrant Share

Panel A: Unbalanced Panel (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
10-Year Avg. GS Temperature (Celsius) 0.206∗∗ 0.337∗∗∗ 0.160∗ -0.069∗ -0.140∗∗ -0.135∗∗ 0.017 -0.185∗∗ -0.006 0.006 -0.152∗∗ 0.012

(0.094) (0.097) (0.095) (0.037) (0.056) (0.057) (0.045) (0.082) (0.068) (0.061) (0.077) (0.066)

T x High Road Density -0.375∗∗∗ 0.125∗ 0.229∗∗ 0.223∗∗
(0.114) (0.066) (0.095) (0.107)

T x High Bank Credit 0.046 0.095 -0.006 -0.034
(0.164) (0.062) (0.082) (0.095)

P-val: T + T x High Road D. 0.601 0.706 0.458 0.380
P-val: T + T x High Bank C. 0.146 0.306 0.820 0.790
Observations 1691 1498 1691 1705 1498 1705 1689 1494 1689 1411 1242 1411

Panel B: Grid Point Average T & P
10-Year Avg. GS Temperature (Celsius), geoinpoly 0.138∗∗ 0.310∗∗∗ 0.271∗∗∗ -0.0723∗∗ -0.118∗∗ -0.151∗∗∗ 0.0229 -0.185∗∗ -0.00590 0.00941 -0.133∗ 0.0286

(0.0601) (0.0903) (0.0671) (0.0312) (0.0572) (0.0488) (0.0447) (0.0831) (0.0687) (0.0640) (0.0743) (0.0672)

T x High Road Density -0.314∗∗∗ 0.119∗ 0.248∗∗ 0.238∗∗
(0.108) (0.0682) (0.0992) (0.108)

T x High Bank Credit -0.258∗∗ 0.123∗∗ 0.00858 -0.0505
(0.106) (0.0578) (0.0863) (0.101)

P-val: T + T x High Road D. 0.954 0.975 0.319 0.225
P-val: T + T x High Bank C. 0.882 0.446 0.962 0.810
Observations 1524 1434 1524 1578 1434 1578 1560 1428 1560 1325 1195 1325

Panel C: Log T & P
Log of 10-Year Avg. GS Rainfall (100 mm) 2.535∗∗∗ 3.320∗∗∗ 2.587∗∗∗ -1.803∗∗∗ -1.902∗∗∗ -2.285∗∗∗ -0.732 -2.187∗∗∗ -1.122∗ -0.915 -1.517∗∗∗ -0.615

(0.642) (1.174) (0.707) (0.338) (0.358) (0.470) (0.755) (0.499) (0.590) (0.572) (0.443) (0.444)

ln T x High Road Density -4.252∗∗ 1.731∗ 3.428∗∗ 3.450∗
(2.008) (1.035) (1.542) (1.942)

ln T x High Bank Credit -1.709 1.398 0.899 -0.948
(2.249) (0.997) (1.436) (2.062)

P-val: ln T + ln T x High Road D. 0.581 0.859 0.403 0.313
P-val: ln T + ln T x High Bank C. 0.686 0.325 0.865 0.453
Observations 1542 1458 1542 1614 1458 1614 1596 1452 1596 1345 1210 1345

Note: The dependent variable is the natural logarithm of the share of agricultural laborers in Columns (1) and (2), of the share of non-agricultural workers in Columns (3) and (4), of urbanization rates in
Columns (5) and (6), and of the share of intra-district migrants in Columns (7) and (8). Temperature is the decadal average of the past ten growing seasons. High Road Density is a binary variable that takes
the value 1 if the district has above median road density at baseline. Data are district-level panel data constructed from the Indian Census. The samples in Panels B and C are restricted to districts for which the
dependent variable is non-missing in all years. All columns control for decadal precipitation and include district and region-by-year fixed effects. Columns (2), (5), (8), and (11) also control for decadal precipi-
tation interacted with the high road density dummy and include high road density-by-year fixed effects. High Bank Credit is a binary variable that takes the value 1 if the district has above median bank credit
per capita at baseline. Columns (3), (6), (9), and (12) control for decadal precipitation interacted with the high bank credit dummy and include high bank credit-by-year fixed effects. We present standard errors
clustered by district in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B10: Effect of Rising Temperatures: Distributed Lagged Averages

Ag Labor Share Non-Ag Worker Share Urbanization Migrant Share

(1) (2) (3) (4) (5) (6) (7) (8)
Average (T0 to T−2) 0.023 0.068 -0.048 -0.067 0.064 0.061 0.029 -0.036

(0.043) (0.044) (0.024)** (0.026)*** (0.028)** (0.032)* (0.054) (0.063)
[0.076] [0.074] [0.034] [0.033]** [0.033]** [0.036]* [0.058] [0.059]

Average (T−3 to T−6) 0.088 0.094 0.009 -0.024 -0.058 -0.055 -0.035 0.034
(0.031)*** (0.037)** (0.015) (0.018) (0.022)*** (0.029)* (0.042) (0.052)
[0.053]* [0.056]* [0.022] [0.022] [0.028]** [0.033]* [0.052] [0.057]

Average (T−7 to T−9) 0.076 -0.020 -0.054 0.006 -0.019 0.005 0.000 -0.022
(0.035)** (0.044) (0.023)** (0.025) (0.023) (0.028) (0.039) (0.047)
[0.060] [0.067] [0.028]* [0.030] [0.027] [0.031] [0.051] [0.057]

Region-year trends Y N Y N Y N Y N
Region-year FE N Y N Y N Y N Y
Observations 1,548 1,548 1,620 1,620 1,596 1,596 1,350 1,350

Note: The dependent variable is the natural logarithm of the share of agricultural laborers in Columns (1) and
(2), of the share of non-agricultural workers in Columns (3) and (4), of urbanization rates in Columns (5) and (6),
and of the share of intra-district migrants in Columns (7) and (8). Data are district-level panel data constructed
from the Indian Census. We restrict our sample to districts for which the dependent variable is non-missing in
all years. All columns include district and year fixed effects. All regressions control for the corresponding dis-
tributed lagged averages for precipitation. We present standard errors clustered by district in parentheses, and
Conley standard errors that allow for spatial correlation up to 500km and arbitrary serial correlation in brackets.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table B11: Robustness to Controlling for Time-Varying Covariates

Ag Labor Share Non-Ag Worker Share Urbanization Migrant Share

(1) (2) (3) (4) (5) (6) (7) (8)
T 0.159 0.129 -0.054 -0.068 -0.007 0.013 0.014 0.015

(0.056)*** (0.058)** (0.032)* (0.031)** (0.044) (0.047) (0.056) (0.062)
[0.077]** [0.074]* [0.040] [0.034]** [0.049] [0.049] [0.061] [0.068]

P -0.125 -0.053 -0.026 -0.000 0.044 0.020 -0.038 -0.004
(0.054)** (0.053) (0.030) (0.031) (0.042) (0.042) (0.045) (0.050)
[0.096] [0.087] [0.038] [0.033] [0.048] [0.046] [0.061] [0.064]

High-yielding-variety area 0.155 0.147 0.087 0.106 0.074 0.071 -0.214 -0.211
(0.066)** (0.067)** (0.048)* (0.049)** (0.059) (0.062) (0.058)*** (0.062)***
[0.077]** [0.077]* [0.056] [0.055]* [0.054] [0.055] [0.061]*** [0.064]***

Labor regulation strictness index -0.077 -0.071 0.002 0.008 0.003 -0.001 0.044 0.045
(0.021)*** (0.023)*** (0.012) (0.013) (0.013) (0.015) (0.016)*** (0.018)**
[0.030]** [0.033]** [0.015] [0.014] [0.015] [0.016] [0.021]** [0.022]**

Road density -0.126 -0.143 0.022 0.021 0.030 0.044 0.027 -0.005
(0.042)*** (0.031)*** (0.012)* (0.014) (0.042) (0.046) (0.109) (0.122)
[0.053]** [0.050]*** [0.018] [0.018] [0.039] [0.041] [0.091] [0.099]

Number of markets 0.003 0.002 -0.002 -0.002 0.000 0.000 -0.003 -0.002
(0.006) (0.005) (0.001)* (0.001) (0.004) (0.003) (0.008) (0.008)
[0.004] [0.004] [0.001]* [0.001] [0.003] [0.002] [0.006] [0.006]

Number of banks -0.049 -0.053 -0.001 -0.002 -0.008 -0.005 -0.007 -0.006
(0.012)*** (0.013)*** (0.006) (0.006) (0.008) (0.008) (0.013) (0.013)
[0.011]*** [0.011]*** [0.005] [0.005] [0.008] [0.008] [0.012] [0.012]

Region-year trends Y N Y N Y N Y N
Region-year FE N Y N Y N Y N Y
Observations 1,546 1,546 1,546 1,546 1,529 1,529 1,283 1,283

Note: The dependent variable is the natural logarithm of the share of agricultural laborers in Columns (1) and (2), of the share
of non-agricultural workers in Columns (3) and (4), of urbanization rates in Columns (5) and (6), and of the share of intra-
district migrants in Columns (7) and (8). Temperature and precipitation are decadal averages of the past ten growing seasons.
Data are district-level panel data constructed from the Indian Census. We restrict our sample to districts for which the de-
pendent variable is non-missing in all years. All columns include district and year fixed effects. All time-varying covariates are
decadal averages. District-level high-yielding variety area, road density, and number of markets are from the VDSA data set.
The state-level labor market strictness index, from Besley and Burgess (2004), ranges from 3 to -3; positive values denote states
that are more rigid (pro-worker); negative values denote states that are more flexible (pro-employer). The number of banks per
district is measured in 100’s and is from Fulford (2013). See Appendix C for more details. We present standard errors clus-
tered by district in parentheses, and Conley standard errors that allow for spatial correlation up to 500km and arbitrary serial
correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B12: Effect of Rising Temperatures using Long-Difference Specification with Alternative End Points

Ag Labor Share Non-Ag Worker Share Urbanization Migrant Share
(1) (2) (3) (4)

T 0.2768 -0.1376 0.0177 -0.3828
(0.1011)*** (0.0551)** (0.0876) (0.1593)**
[0.2243] [0.0587]** [0.1298] [0.1878]**

P -0.9920 0.1561 -0.3520 0.6279
(0.3688)*** (0.1987) (0.2972) (0.5536)
[0.4429]** [0.1828] [0.2864] [0.8081]

Region FE Y Y Y Y
Observations 258 270 266 264

Note: The dependent variable is the share of agricultural laborers in Column (1), the
share of non-agricultural workers in Column (2), urbanization rates in Column (3), and
the share of intra-district migrants in Column (4). The dependent variable in each col-
umn is the difference (in natural logarithm) of an outcome between two 20-year periods,
1961-1971 and 2001-2011. The outcome in 1961-1971 are calculated as the average of
1961 and 1971 decadal observations, and that in 2001-2011 are calculated as the average
of 2001 and 2011. The independent variables are differences in average growing-season
temperature and precipitation over the same periods. Data are district-level data con-
structed from the Indian Census. All columns include region fixed effects. We present
standard errors in parentheses, and Conley standard errors that allow for spatial corre-
lation up to 500km and arbitrary serial correlation in brackets. * p < 0.10, ** p < 0.05,
*** p < 0.01
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Table B13: Heterogeneous Effect of Rising Temperatures with Alternate Thresholds

Ag Labor Share Non-Ag Worker Share Urbanization Migrant Share

Panel A: Road Network Density (1) (2) (3) (4) (5) (6) (7) (8)
T 0.329∗∗∗ 0.291∗∗∗ -0.154∗∗ -0.156∗∗∗ -0.210∗∗ -0.159∗∗ -0.233∗∗∗ -0.063

(0.112) (0.099) (0.067) (0.052) (0.092) (0.080) (0.087) (0.095)

T x (Road Density > 40th pct) -0.301∗∗ 0.113 0.229∗∗ 0.305∗∗∗
(0.121) (0.075) (0.105) (0.107)

T x (Road Density > 60th pct) -0.290∗∗ 0.155∗∗ 0.191∗ 0.112
(0.118) (0.066) (0.097) (0.119)

P-val: T + T x High Road D. 0.677 0.996 0.266 0.994 0.739 0.583 0.324 0.458
Observations 1458 1458 1458 1458 1452 1452 1210 1210

Panel B: Bank Credit Per Capita (1) (2) (3) (4) (5) (6) (7) (8)
T 0.298∗∗∗ 0.212∗∗∗ -0.181∗∗∗ -0.156∗∗∗ -0.037 -0.079 -0.045 -0.008

(0.077) (0.064) (0.051) (0.041) (0.077) (0.062) (0.074) (0.072)

T x (Bank Credit > 40th pct) -0.224∗∗ 0.143∗∗ 0.036 0.026
(0.106) (0.059) (0.091) (0.098)

T x (Bank Credit > 60th pct) -0.149 0.126∗∗ 0.118 -0.026
(0.119) (0.056) (0.084) (0.112)

P-val: T + T x High Bank C. 0.373 0.552 0.308 0.484 0.988 0.533 0.812 0.728
Observations 1548 1548 1620 1620 1596 1596 1350 1350

Note: The dependent variable is the natural logarithm of the share of agricultural laborers in Columns (1) and (2), of the
share of non-agricultural workers in Columns (3) and (4), of urbanization rates in Columns (5) and (6), and of the share of
intra-district migrants in Columns (7) and (8). Temperature is the decadal average of the past ten growing seasons. In Panel
A, we use alternate heterogeneity dummies which take the value of 1 if the district’s baseline road density is above the 40th or
60th percentile, depending on the column. Data are district-level panel data constructed from the Indian Census. We restrict
our sample to districts for which road density/bank credit data is non-missing and the dependent variable is non-missing in
all years. All columns include district fixed effects, region-by-year fixed effects, and high road density-by-year fixed effects.
We control for decadal precipitation and decadal precipitation interacted with the road density dummy. In Panel B, we use
alternate heterogeneity dummies, which take the value of 1 if the district’s baseline bank credit per capita is above the 40th
or 60th percentile, depending on the column. All columns include district fixed effects, region-by-year fixed effects, and high
bank credit-by-year fixed effects. We control for decadal precipitation and decadal precipitation interacted with the high
bank credit dummy. We present standard errors clustered by district in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B14: Heterogeneity by Road Density: Interacting Other Baseline Char-
acteristics with Temperature

Panel A: Ag Labor Share (1) (2) (3) (4) (5)
T 0.355 0.557 0.420 0.389 0.352

(0.099)*** (0.103)*** (0.116)*** (0.134)*** (0.153)**
[0.118]*** [0.133]*** [0.141]*** [0.166]** [0.179]**

T x High Road Density -0.362 -0.387 -0.345 -0.353 -0.391
(0.114)*** (0.116)*** (0.115)*** (0.113)*** (0.123)***
[0.128]*** [0.128]*** [0.127]*** [0.124]*** [0.137]***

Controls None I II III IV
Observations 1,458 1,458 1,428 1,428 1,344

Panel B: Non-Ag Worker Share
T -0.137 -0.115 -0.069 -0.007 -0.048

(0.058)** (0.063)* (0.060) (0.062) (0.070)
[0.052]*** [0.063]* [0.063] [0.066] [0.066]

T x High Road Density 0.119 0.117 0.083 0.100 0.127
(0.068)* (0.067)* (0.062) (0.061) (0.064)**
[0.062]* [0.060]* [0.059] [0.057]* [0.058]**

Controls None I II III IV
Observations 1,458 1,458 1,428 1,428 1,344

Panel C: Urbanization
T -0.190 -0.121 -0.066 -0.037 -0.225

(0.083)** (0.090) (0.097) (0.114) (0.125)*
[0.068]*** [0.075] [0.084] [0.100] [0.107]**

T x High Road Density 0.231 0.224 0.185 0.191 0.208
(0.098)** (0.098)** (0.097)* (0.095)** (0.089)**
[0.084]*** [0.084]*** [0.086]** [0.085]** [0.074]***

Controls None I II III IV
Observations 1,452 1,452 1,422 1,422 1,344

Panel D: Migrant Share
T -0.149 -0.135 -0.195 -0.243 -0.348

(0.078)* (0.086) (0.110)* (0.127)* (0.161)**
[0.075]** [0.097] [0.122] [0.130]* [0.159]**

T x High Road Density 0.227 0.222 0.221 0.208 0.168
(0.108)** (0.110)** (0.116)* (0.114)* (0.120)
[0.100]** [0.102]** [0.109]** [0.109]* [0.111]

Controls None I II III IV
Observations 1,210 1,210 1,190 1,190 1,120

Note: The dependent variable is the natural logarithm of the share of agricultural laborers in Panel A, of the
share of non-agricultural workers in Panel B, of urbanization rates in Panel C, and of the share of intra-district
migrants in Panel D. Temperature is the decadal average of the past ten growing seasons. High Road Density is
a binary variable that takes the value 1 if the district has above median road density at baseline. All columns
include district, region-by-year and high road density-by-year fixed effects. We control for decadal precipitation
and decadal precipitation interacted with the road density dummy. Data are district-level panel data constructed
from the Indian Census. We restrict our sample to districts for which road density data is non-missing and the
dependent variable is non-missing in all years. In Columns (2) through (5) we cumulatively add other dummy
controls interacted with decadal temperature and with decadal precipitation, to test the stability of our road
density heterogeneity coefficient. These controls are I: above median bank credit per capita at baseline; II: I and
above median male agricultural wages at baseline; III: II and above median long-run temperature; IV: III and
above median proportion irrigated land at baseline. We present standard errors clustered by district in paren-
theses, and Conley standard errors that allow for spatial correlation up to 500km and arbitrary serial correlation
in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01 70



Table B15: Heterogeneity by Bank Credit: Interacting Other Baseline Char-
acteristics with Temperature

Panel A: Ag Labor Share (1) (2) (3) (4) (5)
T 0.271 0.562 0.402 0.354 0.285

(0.070)*** (0.097)*** (0.111)*** (0.134)*** (0.155)*
[0.082]*** [0.118]*** [0.125]*** [0.149]** [0.169]*

T x High Bank Credit -0.217 -0.219 -0.206 -0.208 -0.243
(0.110)** (0.106)** (0.098)** (0.097)** (0.114)**
[0.111]* [0.112]* [0.109]* [0.109]* [0.123]**

Controls None I II III IV
Observations 1,548 1,458 1,428 1,428 1,344

Panel B: Non-Ag Worker Share
T -0.157 -0.194 -0.144 -0.079 -0.146

(0.048)*** (0.066)*** (0.064)** (0.068) (0.078)*
[0.062]** [0.070]*** [0.061]** [0.063] [0.070]**

T x High Bank Credit 0.106 0.104 0.058 0.061 0.084
(0.059)* (0.066) (0.064) (0.062) (0.067)
[0.066] [0.075] [0.068] [0.067] [0.074]

Controls None I II III IV
Observations 1,620 1,458 1,428 1,428 1,344

Panel C: Urbanization
T -0.042 -0.190 -0.146 -0.127 -0.356

(0.069) (0.080)** (0.096) (0.115) (0.127)***
[0.068] [0.076]** [0.083]* [0.098] [0.108]***

T x High Bank Credit 0.030 0.099 0.070 0.079 0.092
(0.087) (0.090) (0.090) (0.091) (0.079)
[0.078] [0.095] [0.088] [0.088] [0.079]

Controls None I II III IV
Observations 1,596 1,452 1,422 1,422 1,344

Panel D: Migrant Share
T -0.013 -0.035 -0.105 -0.160 -0.250

(0.069) (0.095) (0.120) (0.143) (0.176)
[0.084] [0.117] [0.134] [0.145] [0.166]

T x High Bank Credit -0.029 -0.094 -0.134 -0.134 -0.192
(0.099) (0.109) (0.105) (0.105) (0.100)*
[0.114] [0.124] [0.124] [0.124] [0.120]

Controls None I II III IV
Observations 1,350 1,210 1,190 1,190 1,120

Note: The dependent variable is the natural logarithm of the share of agricultural laborers in Panel A, of the
share of non-agricultural workers in Panel B, of urbanization rates in Panel C, and of the share of intra-district
migrants in Panel D. Temperature is the decadal average of the past ten growing seasons. High Bank Credit is a
binary variable that takes the value 1 if the district has above median road density at baseline. All columns in-
clude district, region-by-year and high bank credit-by-year fixed effects. We control for decadal precipitation and
decadal precipitation interacted with the bank credit dummy. Data are district-level panel data constructed from
the Indian Census. We restrict our sample to districts for which bank credit data is non-missing and the depen-
dent variable is non-missing in all years. In Columns (2) through (5) we cumulatively add other dummy controls
interacted with decadal temperature and with decadal precipitation, to test the stability of our bank credit het-
erogeneity coefficient. These controls are I: above median road density at baseline; II: I and above median male
agricultural wages at baseline; III: II and above median long-run temperature; IV: III and above median pro-
portion irrigated land at baseline. We present standard errors clustered by district in parentheses, and Conley
standard errors that allow for spatial correlation up to 500km and arbitrary serial correlation in brackets. * p <
0.10, ** p < 0.05, *** p < 0.01 71



C Data Appendix

Section 3 summarizes the data used in the analysis. In this data appendix,
we provide additional information on the various data sources as well as the
construction of key variables.

C.1 Census Data

The Primary Census Abstract (PCA) and the Migration (D-series) data ta-
bles in the Indian Population Census are the sources of decadal district-level
data on demographic and economic indicators (population, worker counts by
categories, migrant counts) from 1961 to 2011. For the years 1961-1991, we
use data from Vanneman and Barnes (2000), and for the years 2001 and 2011,
we use data from the Census website.32

The Census classifies workers into four categories: cultivators, agricultural
laborers, workers in household industry and other workers. A cultivator is
defined as a worker who is “engaged in cultivation of land owned or held
from Government or held from private persons or institutions for payments
in money, kind or share.” An agricultural laborer is defined as a worker who
“works on another person’s land for wages in money or kind or share. She or
he has no risk in the cultivation, but merely works in another person’s land
for wages.” Household industry is defined as “an industry conducted by one or
more members of the household at home or within the village in rural areas
and only within the precincts of the house where the household lives in urban
areas.” Other worker is defined as a “worker other than cultivator, agricultural
laborer or worker in household industry.” Examples of other workers include
work in the public sector, manufacturing, construction, trade, business etc.33

We construct agricultural labor share as the total count of agricultural
laborers divided by total workers. We construct non-agricultural worker share

32https://censusindia.gov.in/pca/
33Details on these categories can be found in the codebook of Vanneman and Barnes

(2000) available at http://vanneman.umd.edu/districts/codebook/laborforce.html,
as well as in the 2011 Census meta data available at https://www.censusindia.gov.in/
2011census/HLO/Metadata_Census_2011.pdf.
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as the sum of workers across two categories – household industry workers and
other workers – divided by total workers. Note that the agricultural labor
share is not a perfect complement to the non-agricultural worker share as
we do not include cultivators when constructing the agricultural labor share.
We construct cultivator share as the total count of main cultivators divided
by total workers. Note that our measure of cultivator share excludes marginal
cultivators (those who “worked for less than six months in the reference period”)
because we do not have this data for 1961-1991.

The Census further splits agricultural laborers into two categories: main
and marginal agricultural laborers. A main agricultural laborer is defined as
a worker who “worked for more than six months in the reference period.” A
marginal agricultural laborer is defined as a worker who “worked for less than
six months in the reference period.” We construct main (marginal) agricultural
labor share as the main (marginal) count of agricultural laborers divided by
total workers.

Turning to urbanization and migration, we construct urbanization share as
the total urban population divided by total population. The Census definition
of urban areas has stayed largely consistent since the 1961 census. Urban areas
constitutes (a) Statutory Towns: all places with a municipality, corporation,
cantonment board or notified town area committee, etc., (b) Census Towns:
all places which satisfied the following criteria: i) A minimum population of
5,000; ii) At least 75 per cent of the male main working population engaged
in non-agricultural pursuits; and iii) A density of population of at least 400
persons per sq. km., and (c) Adjoining Outgrowths: a viable unit such as a
village or a hamlet (part of a village) contiguous to a town and posses urban
features in terms of infrastructure and amenities.

For migration, the Census classifies an individual as an intra-district mi-
grant “if the place in which he is enumerated during the census is other than
his place of immediate last residence,” and if the last residence is within the
same district of his/her current residence. We construct migrant share as the
total count of intra-district rural-to-urban male migrants divided by total male
population. We consider male migration only as a majority of female migra-
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tion in India is for marriage, which is outside the scope of our study. We
do not have this measure for 1971 due to missing data on migrant counts in
Vanneman and Barnes (2000).

C.2 National Sample Survey Data

The Consumer Expenditure (Schedule 1) and Employment and Unemploy-
ment (Schedule 10) modules of the National Sample Survey, collected by the
National Sample Survey Office (NSSO), are the sources of nationally represen-
tative data on demographic and social characteristics, consumption patterns as
well as labor market behavior at the individual- and household-level in India.

We use eight rounds of the Employment and Unemployment schedule,
spanning the years 1987 to 2012.34 The time period covered in each round
corresponds to the agricultural year from July to the following June. More
specifically, the data covers the following time periods (with round number
reported in parentheses): July 1987- June 1988 (43rd), July 1993 - June 1994
(50th), July 1999 - June 2000 (55th), July 2004 - June 2005 (61st), July 2005 -
June 2006 (62nd), July 2007 - June 2008 (64th), July 2009 - June 2010 (66th),
July 2011 - June 2012 (68th).

We restrict the sample to include individuals aged 14 – 65 who partici-
pate in the labor force. We use a series of questions regarding individual-level
employment activities — this includes employment status and industry of
the main activity — during a seven-day reference period. We use industry
information from the reference week to classify individuals as working in agri-
cultural and non-agricultural sectors.35 We aggregate individual-level data to
construct the following employment shares at the district level: the share of
the labor force who are engaged in agriculture, the share of the labor force
who are engaged in non-agriculture, and the share of the labor force who are
engaged in manufacturing, services, and construction. We also use informa-

34They can be downloaded from http://microdata.gov.in/nada43/index.php/catalog/EUE.
35The agricultural sector includes sub-sectors such as crop and animal production, hunt-

ing and related service activities, forestry and logging, and fishing and aquaculture. The
non-agricultural sectors include mining and quarrying, manufacturing, construction, and
services.
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tion on each individual’s principal and subsidiary employment during the year
to construct the following employment shares at the district level: shares of
the labor force engaged in agriculture as a primary and secondary occupation,
and shares of the labor force engaged in non-agriculture as a primary and
secondary occupation.

There is one caveat with the NSS sample described above. The 50th round
in 1993-1994 has incomplete coverage of the urban population — most of
the districts have their rural households represented, but only a quarter of
the districts have their urban households represented in this survey round.
We present results using the complete set of NSS rounds in the paper; these
results are robust to the exclusion of the 50th round.36

In addition, we use six rounds of the Consumption schedule, spanning the
years 1993 to 2012.37 More specifically, the data covers the following time
periods (with round number reported in parentheses): July 1993 - June 1994
(50th), July 1999 - June 2000 (55th), July 2004 - June 2005 (61st), July 2007
- June 2008 (64th), July 2009 - June 2010 (66th), July 2011 - June 2012
(68th). We aggregate household-level data to construct the following annual
consumption per capita measures at the district level: total consumption,
food consumption, and non-food consumption. The consumption variables are
adjusted to 2005 base prices using separate purchasing-power-parity conversion
rates for urban and rural areas at the state level — this teases out temporal
and spatial price level differences such that our consumption variables are
comparable across all states, across urban and rural areas, and over all time
periods.

C.3 Weather Data

The Terrestrial Precipitation: Monthly Time Series (1900–2014), version 4.01,
and the companion Terrestrial Air Temperature data set (Matsuura and Will-
mott, 2015a,b) is the source of gridded monthly-level data on temperature and
precipitation from 1951-2011.

36These results are available upon request.
37They can be downloaded from http://microdata.gov.in/nada43/index.php/catalog/CEXP.
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We first construct district-level weather data by taking the weighted aver-
age of all grid points within 100 kilometers of each district’s centroid, using
weights that are the inverse of the squared distance between the grid point
and the district centroid. This inverse distance weighting method is also used
in Burgess et al. (2017) and Taraz (2018). We calculate average temperature
and precipitation during the main agricultural growing season (June through
February) as these have the greatest impacts on agriculture. Next, we aggre-
gate the growing season weather variables to ten-year averages.

C.4 Infrastructure and Yields Data

The Village Dynamics in South Asia (VDSA) Meso dataset, compiled by re-
searchers at the International Crops Research Institute for the Semi-Arid Trop-
ics (ICRISAT, 2015), consists of a large set of demographic, socioeconomic and
agro-ecological variables at the district level. It covers 19 major agricultural
states in India at an annual frequency from 1966 to 2010.38

The VDSA Meso dataset is the source of district-level data on total length
of roads in kilometers. The underlying sources of the VDSA roads data are the
annual State Statistical Abstracts. We construct a baseline road infrastructure
density measure as the total length of roads in kilometers in each district in
1970 – the earliest year for which this data is available – divided by the total
surface area, computed in ArcGIS using the consistent district boundaries
illustrated in Appendix Figure B1a. Data on length of roads is missing for
15 districts in 1970. Furthermore, we are unable to construct a road density
measure for 22 additional districts since coverage in the VDSA Meso dataset
is limited to nineteen states in India.

The VDSA Meso dataset is also the source of annual district-level data on
crop yields. The underlying sources of the VDSA data on yields are state-level
agricultural agencies such as the Directorate of Agriculture and the Directorate

38The states covered in the data base are Andhra Pradesh, Assam, Bihar, Chhattisgarh,
Gujarat, Haryana, Himachal Pradesh, Jharkhand, Karnataka, Kerala, Madhya Pradesh,
Maharashtra, Orissa, Punjab, Rajasthan, Tamil Nadu, Uttar Pradesh, Uttarakhand, and
West Bengal.
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of Agriculture and Food Production. We construct an annual yield measure
that aggregates yields across all the crops in VDSA that have non-missing
price data, using 1966-1970 crop prices as weights. The crops included are
rice, wheat, sugarcane, cotton, groundnut, sorghum, maize, pearl millet, finger
millet, barley, chickpeas, pigeon pea, sesame, rapeseed and mustard, castor,
and linseed.

In one of our robustness tests, we use data on high yielding variety areas
from VDSA. Specifically, we control for the fraction of area that is grown with
high yield varieties, as a fraction of the total cultivated area in that district in
that year.

C.5 Bank Credit Data

The Basic Statistical Returns (BSR) reports, collected by the Reserve Bank
of India, is the source of district-level bank credit.39 The Basic Statistical
Returns System was launched in 1971 with the goal of creating a database
of scheduled commercial banks. We use the 1972 BSR reports (the earliest
available), and digitize Table 2.2, which contains district-wise statistics on
the number of functioning offices of scheduled commercial banks, aggregate
deposits, and total credit (advances) from all offices as of the last Friday in
December 1972. The coverage of data in the 1972 BSR report is 98.7% of
aggregate deposits and 98.6% of total credit. We construct a baseline bank
credit per capita measure as the total bank credit in a district divided by its
total population in 1971.

C.6 Other Data

We draw on two other data sources in our robustness tests. First, we use state-
level data on labor regulation strictness from Besley and Burgess (2004). The
index ranges from 3 to -3; positive values denote states that are more rigid (pro-
worker); negative values denote states that are more flexible (pro-employer). It

39These reports are available at https://dbie.rbi.org.in/DBIE/dbie.rbi?site=
publications.
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is based on a tabulation of state-level amendments to the Industrial Disputes
Act of 1947, which regulates trade unions, arbitration, and procedures to be
followed in the case of an industrial disputes. Because different states passed
different amendments to this Act at different points in time, the index from
Besley and Burgess (2004) provides a measure of labor regulation with both
spatial and temporal variation.

Second, we use data on the number of banks in each district in each year,
as a proxy for financial development of the district. The data on the number
of banks is based on bank opening data from the Reserve Bank of India, as
compiled by Fulford (2013).
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