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Abstract

This paper investigates the impact of temperature on economic activity in India,
using state-level data from 1980–2015. We estimate that a 1 ◦C increase in contempo-
raneous temperature (relative to our sample mean) reduces the economic growth rate
that year by 2.5 percentage points. The adverse impact of higher temperatures is more
severe in poorer states and in the primary sector. Our analysis of lagged temperatures
suggests that our effects are driven by the contemporaneous effect of temperature on
output; we do not find evidence of a permanent impact of contemporaneous tempera-
tures on future growth rates.
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1 Introduction

Mean global temperatures are projected to increase by as much as 2 ◦C-4.8 ◦C by the year

2100, relative to pre-industrial levels (IPCC, 2014). Researchers have estimated that these

higher temperatures may have a significant impact on a variety of economic and social out-

comes, including agricultural output (Schlenker & Roberts, 2009), labour supply (Graff Zivin

& Neidell, 2014), mortality (Deschênes & Greenstone, 2011), energy usage (Auffhammer,

Baylis, & Hausman, 2017), conflict (Burke, Hsiang, & Miguel, 2015a; Hsiang, Burke, &

Miguel, 2013), health (Deschênes, 2014), poverty (Herrera, Ruben, & Dijkstra, 2018), labour

productivity (Somanathan, Somanathan, Sudarshan, & Tewari, 2015), and industrial total

factor productivity (Zhang, Deschênes, Meng, & Zhang, 2018). The damages from higher

temperatures are expected to be especially severe in low- and middle-income countries (Dif-

fenbaugh & Burke, 2019), due in part to these countries’ higher reliance on agriculture and

lower capacity to adapt to these temperatures. Furthermore, many low- and middle-income

countries are located in low latitudes that are expected to experience heat extremes soonest

(Harrington et al., 2016).

Against this backdrop, India is a particularly important country upon which to focus.

Indeed, India has been estimated to have the highest country-level social cost of carbon

of any nation (Ricke, Drouet, Caldeira, & Tavoni, 2018). Sector-specific research on India

provides evidence that higher temperatures reduce agricultural yields (Taraz, 2018) and

manufacturing productivity (Somanathan et al., 2015). Yet to date, there has been limited

analysis for India that focuses on the impact of higher temperatures on aggregate economic

output. This study aims to fill that gap in the growing collection of cross-country and

within-country studies exploring the economic consequences of rising temperatures (Colacito,

Hoffman, & Phan, 2019; Dell, Jones, & Olken, 2012).

Using state-level data on economic activity spanning the fiscal years 1980-81 to 2014-

15 and annual state-level temperature data constructed from the ERA-Interim Archive,

we employ a fixed effects model to investigate the relationship between temperature and
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gross state domestic product (GSDP). Our fixed effects strategy relies on the quasi-random

nature of year-to-year fluctuations in weather to capture causal impacts of temperature, an

approach pioneered by Deschênes and Greenstone (2007) and subsequently used widely in the

environmental economics literature (Dell, Jones, & Olken, 2014). The complex nature of the

relationship between temperature and growth apparent from the existing literature motivates

our use of subnational rather than national data (Colacito et al., 2019; Zhao, Gerety, &

Kuminoff, 2018). Our inclusion of a quadratic function of temperature is informed by earlier

research that has found evidence of nonlinear impacts of temperature on economic activity

(Burke, Hsiang, & Miguel, 2015b) and we also explore whether the impact of temperature

on growth is transitory or permanent by adding lagged temperature to our specification.

Moreover, in light of the heterogeneous nature of the relationship found in other studies

(Burke et al., 2015b; Dell et al., 2012), we test for heterogeneity in the temperature-growth

relationship arising from a state’s income level, from its dependence on agriculture, or based

on the time period examined. To gain further insight into the outcome of our aggregate

GSDP analysis, we examine separately the relationship between temperature and growth for

the primary, secondary, and tertiary sectors in each state.

The first of our four key results points to large impacts of contemporaneous temperature

on economic output, depressing economic growth in that year. Specifically we find that a

1 ◦C increase in temperature leads to a 2.5 percentage points reduction in contemporaneous

growth rates. This result is robust to several variations in specification. Second, when we

control for lagged temperatures in order to test whether the impact on growth is permanent

or transitory, we do not find convincing evidence of a permanent impact: While our point

estimate suggests a potentially sizeable impact of higher temperatures on permanent growth

rates, our estimates are imprecisely measured. Third, we find heterogeneity in the responses

of state-level economic output to contemporaneous temperature, based on income levels.

Impacts in poorer states are statistically significantly larger than in the richer states. And,

fourth, while we find the impact of higher temperatures is largest in the primary sector (that
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includes agriculture, forestry and logging, fishing, and mining), we also find evidence that

manufacturing output and services are influenced by temperature. This is consistent with

the existence of other channels of influence beyond the more obvious primary-sector links;

for example, the existence of adverse impacts of high temperatures on labour productivity

(Somanathan et al., 2015), underpinning the value of adding a macro-level study to the

existing sectoral work on India.

These results complement and add to a growing body of evidence that explores the impact

of temperature on economic growth rates across a range of settings. This literature is rooted

in the seminal paper by Dell et al. (2012), who explore a country-level data set spanning 125

countries and 50 years. The authors find that higher temperatures reduce growth rates, but

only in poor countries. Colacito et al. (2019) build on the Dell et al. (2012) methodology and

study economic growth in the United States. A significant contribution of these authors is

their use of sub-national data; they find that a 1 °F increase in average summer temperature

was associated with a reduction in the annual growth rate of US state-level output of 0.15

to 0.25 percentage points. Another notable contribution is Burke et al. (2015b) who focus

on economic output, rather than growth rates, as their dependent variable, and introduce

the use of a quadratic specification to allow for nonlinear effects of temperature on economic

output. As with Dell et al. (2012), Burke et al. (2015b) use country-level data. They find that

13 ◦C is the optimal temperature for economic output, and that output declines dramatically

above this level, both in poor and rich countries. Finally, Zhao (2018) also provides useful

context for our study. The author examines the temperature–growth relationship in India

and China, using a different form of subnational data (geophysically scaled) than we do, and

5-year growth rates. The results point to a nonlinear relationship between temperature and

growth rates, with optimal temperatures peaking at around 12 ◦C.

Our study combines the nonlinear specification of Burke et al. (2015b) with the use of sub-

national data in the context of India, a large, developing country, to study the temperature–

growth relationship. Thus, we focus on a country that is likely to be hardest hit by the

4



impact of climate change on global temperatures using data that is less likely to aggregate

away the relationship of interest. We complement existing sector-specific studies on India

with a macro-level analysis at the state level that allows us to uncover potential sources

of heterogeneity in the temperature–growth relationship across states with different char-

acteristics. These findings could be potentially useful in framing policy responses to rising

temperatures.

The rest of the paper is organised as follows. In Section 2, we describe our data sources

and present summary statistics. In Section 3, we outline our empirical strategy, while the

presentation of our main results follows in Section 4. In Section 5, we test for transitory

versus permanent growth effects. In Section 6, we conclude.

2 Data

2.1 State domestic product data

We use data on real gross state domestic product (GSDP) at factor cost from the Government

of India.1 The data span the fiscal years 1980-81 to 2014-15. Of the 30 states and 3 union

territories for which GSDP data are available, we drop the state of Mizoram, because it is

missing data for over half of the years in our sample, and the state of Telangana, because

it was created in 2014. In addition, we drop the union territory of Andaman and Nicobar

Islands due to the absence of weather data. Therefore, our final sample consists of 28 states

and 2 union territories, as listed in Appendix Table A1.

In addition to the aggregate GSDP data, we draw upon the sub-categories available

in the dataset to create annual series by state for three economic sectors - the primary

sector comprising agriculture, forestry and logging, fishing, and mining, the secondary sector

covering manufacturing, construction, and electricity, gas and water, and the tertiary sector
1The GSDP data are available at https://niti.gov.in/state-statistics. These data are also used

by other researchers, including Kumar and Managi (2012) and Bhattacharya (2019).
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that includes transport, storage and communication, trade, hotels and restaurants, banking,

real estate, public administration, and other services.

2.2 Weather data

Our weather data are constructed from gridded temperature and precipitation data from the

ERA-Interim Archive.2 This data set provides daily temperature and precipitation for a 1°

latitude by 1° longitude grid. To construct state-level weather outcomes, we use an approach

analogous to that in Colacito et al. (2019). First, for each district in India, we construct

district-level weather by inverse weighting all the weather data grid points within a 100km

radius of the district’s geographic centroid. Next, we construct state-level data by averaging

together all of the districts within a state, using the district areas as weights. Finally, we

aggregate daily weather outcomes to annual weather outcomes—average annual temperature

and total annual precipitation—based on India’s fiscal year, which runs from April 1st to

March 31st.

2.3 Other data

For our heterogeneity analysis of income, we use Census data (Government of India, 1981)

to distinguish rich versus poor states, based on GSDP per capita in 1981, the beginning of

our sample period. States are characterised as poor (rich) if their GSDP per capita in 1981

is below (above) the median at that time. To analyse heterogeneity relative to reliance on

agriculture, we use our sectoral data to classify states as high (low) agriculture if their share

of agriculture in GSDP in 1981 is above (below) the median at that time.3

2The ERA-Interim Archive is available at https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era-interim.

3We prefer conceptually to base our heterogeneity analysis on values from the beginning of the sample
period, as they are more exogenous relative to shocks experienced during the sample period.
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2.4 Summary statistics

Table 1 displays summary statistics for our key variables. Column 1 presents means and

standard deviations of the variables, weighting all states and union territories equally. In

Column 2, summary statistics are presented with each state-year observation weighted by

the proportion, averaged over the whole sample, of that state’s GSDP, relative to national

GDP. For context, Appendix Figure A1 displays the evolution of national GDP, and GDP

by sector, over our sample period. Appendix Table A1 provides the list of states and union

territories in our sample, and also notes their classification by our heterogeneity measures

(rich/poor, high agriculture/low agriculture).

3 Empirical strategy

We use panel data to estimate the impact of temperature on GSDP growth rates, in a fixed

effects framework. Our regression specification builds on the approach used by Colacito et al.

(2019) to study growth rates in a panel of US states, but we extend that framework to allow

for nonlinear effects of temperature on economic activity, as in Burke et al. (2015b). Our

main analysis consists of two regression specifications. The first is our baseline regression,

which takes the form:

∆ys,t =β1Ts,t + β2T
2
s,t + f(Ps,t) + ρ∆ys,t−1 + αs + αt + εs,t, (1)

where ∆yst is the GSDP growth rate from fiscal year t− 1 to t for state or union territory s.

The term Tst is the average annual temperature in fiscal year t and we include a quadratic

term in temperature, T 2
st, to allow for nonlinear effects of temperature on growth rates,

following Burke et al. (2015b). We demean temperature relative to the average temperature

over our sample period to improve the precision of our estimates. We control for a quadratic

function of precipitation, f(Pst), since temperature and precipitation may be correlated
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with each other, in which case omitting precipitation would lead to omitted variable bias

(Auffhammer, Hsiang, Schlenker, & Sobel, 2013). We include a control for the one-year-

lagged growth rate, ∆ys,t−1, to control for potential autocorrelation in the dependent variable.

The term αs represents state fixed effects, which controls for unobserved state characteristics

that may be correlated with temperature or growth rates. The term αt represents year fixed

effects, which controls for nation-wide shocks to temperature or to growth rates. The term

εst is an idiosyncratic error term. Following Colacito et al. (2019), we weight each state by

the proportion, averaged over the entire sample, of its GSDP relative to GSDP of the full

sample. We use heteroskedasticity robust standard errors.

The coefficients of interest in this regression are β1 and β2, which capture the impact of

temperature on GSDP growth rates. Since temperature is demeaned in this regression, the

sum of β1 and β2 will capture the impact of a 1 ◦C increase in contemporaneous temperature,

relative to the mean temperature over our sample period.

Our second regression specification extends our baseline model to allow for heterogeneous

effects. We estimate:

∆ys,t =[βlTs,t + β2T
2
s,t]1{Poors = 1}+ [β3Ts,t + β4T

2
s,t]1{Poors = 0}+

+ f(Ps,t, Poors) + ρ∆ys,t−1 + αs + αt + εs,t,

(2)

Here, Poors is a dummy that we use to test for heterogeneity by income level. Poors equals

1 if a state had below median GSDP per capita in 1981, and is zero otherwise. In this

regression, β1 and β2 capture the nonlinear effect of temperature on economic growth in

the poorer states, while β3 and β4 capture that effect in the richer states. To ensure that

precipitation is not confounding our effects, we include the quadratic function f(Ps,t, Poors),

which allows precipitation to have a nonlinear effect that can vary across the poorer versus the

richer states. We also test for heterogeneity according to each state’s reliance on agriculture.

To do so, we re-estimate equation 2, but replace Poors with HighAgricultures, where this

variable equals 1 if a state’s proportion of agricultural GSDP out of total GSDP was above
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the median in 1981, and is zero otherwise.4 Lastly, to test for heterogeneous effects over

time, we replace Poors with Earlyt, a dummy that equals 1 if the year is 1998 or earlier,

and zero otherwise.

Finally, we also explore how effects vary by sector of the economy. We re-estimate Equa-

tion 1, but replace the dependent variable to be the growth rate of the primary, secondary,

or tertiary sector, in order to explore the differential effects of temperature by sector of the

economy.

4 Main results

Table 2 displays the regression results from Equations 1 and 2 and includes columns with

both linear and quadratic temperature specifications, for comparison. Throughout the table,

temperature is demeaned, relative to the mean temperature for the sample period (23.7 ◦C).

Columns 1 and 2 present the baseline results. We find that higher temperatures have a large

and statistically significant effect on economic activity. Looking at the quadratic specification

in column 2, we find that a 1 ◦C increase in temperature (relative to the sample mean) leads

to a 2.5 percentage point reduction in the growth rate that year. Compared to the earlier

literature, our estimate is larger than the 1.3 percentage point reduction in GDP per capita

found by Dell et al. (2012) for poor countries, using country-level data and a linear model.

Our larger estimate may be due in part to our use of subnational data, which allows us to

detect some effects that country-level averaging may obscure. Our estimate is also larger

than the subnational estimates found by Colacito et al. (2019) for a panel of US states,

who find that a 1 ◦C increase in summer temperatures reduces growth rates by 0.27 to 0.45

percentage points. However, following the results from Dell et al. (2012), it is to be expected

that temperature impacts would be substantially larger in a lower-middle-income country,

such as India, as opposed to a high-income country, such as the United States.
4Appendix Table A2 presents a two-way frequency table for the “poor” and “high agricultural” variables.

As can be seen from the table, the categorisation varies substantively across the two measures.
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Figure 1 displays our baseline results graphically. Our estimates indicate that the optimal

annual average temperature for economic output in India is 17.6 ◦C (64°F). This estimate of

optimal temperature is significantly higher than the 13 ◦C optimum reported by Burke et al.

(2015b) for a global panel of country-level data, suggesting India’s economy may be com-

paratively well-adapted to moderately high temperatures. However, this optimum still falls

far below India’s average annual temperature (23.7 ◦C). Furthermore, temperatures above

17.6 ◦C reduce contemporaneous economic growth rates and these reductions are statistically

significant at the 95% confidence level for temperatures of 22.5 ◦C and above.

Columns 3–8 of Table 2 present the results of our heterogeneous regressions. Columns

3 and 4 test for heterogeneity by income level. We find that higher temperatures adversely

impact contemporaneous economic growth rates to a greater extent in poorer states than in

richer states. Based on the estimates from Column 4, a 1 ◦C increase in contemporaneous

temperatures (relative to our sample mean) reduces current growth rates by 4 percentage

points in poorer states, but only by 1.7 percentage points in richer states. The difference

between these impacts is statistically significant at the 95% confidence level. Columns 5

and 6 test for heterogeneity according to each state’s level of reliance on agriculture. In

the linear specification in Column 5, we find the unexpected result that losses due to high

temperatures are greater in low agricultural states than high agricultural states. However,

this difference is not statistically significant, due to a lack of precision in the estimate of the

coefficient on high agriculture. In the quadratic specification (our preferred specification),

we find that the losses from a 1 ◦C increase are similar in magnitude for high and low

agricultural states and are not statistically different from each other. The last two columns

look at heterogeneity by time period, comparing impacts pre- and post-1998. Here we fail

to find evidence of heterogeneity, suggesting that the temperature–growth relationship has

not changed substantively over this time period.

Figure 2 displays the heterogeneity results graphically. The left panel displays hetero-

geneity by income level. Here we see that although the optimum temperature for growth is
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roughly the same for both the poorer and the richer states, the decline in growth rates for

temperatures above the optimum is sharper for the poorer states, suggesting that they are

less able to cope with higher temperatures. The centre panel compares states by their level

of reliance on agriculture. Here we see that, at high temperatures, the estimated magnitude

of losses for high agricultural states exceeds that of low agricultural states, although the

difference is not statistically significant.

The final panel of Figure 2 compares the earlier years of our sample (pre-1998) to the later

years. Here, we see graphically the lack of a statistically significant difference in the response

curves, pre- and post-1998. This suggests that, despite India’s economic development over

this period, economic growth has not become less sensitive to temperature.5 This lack

of difference is surprising since we might expect adaptation to occur over time (Barreca,

Clay, Deschênes, Greenstone, & Shapiro, 2016; Taraz, 2017). On the other hand, the lack

of adaptation over time mirrors results found in Burke and Emerick (2016), who use a

long-difference method applied to US agriculture and fail to find evidence of substantial

long-run adaptation to temperature. Our result also mirrors Carleton (2017) who fails to

find evidence that farmer suicides in India are becoming less sensitive to temperature over

time. Along similar lines, Burgess, Deschênes, Donaldson, and Greenstone (2017) find only

weak evidence of adaptation over 1956-2000 when looking at the temperature–mortality

relationship in India. The relatively short window of time that we are studying may also be

a factor in why we fail to find a difference over time.

An important caveat to our heterogeneity analysis is that, although adaptation to tem-

perature doesn’t seem apparent, the overall economy of India is dynamic and has changed

dramatically during our sample period. As a result, the classification of states as poor/rich

or high/low agriculture would vary, depending on which year of data we relied on for clas-

sification. To demonstrate this, Appendix Tables A3 and A4 display the GSDP per capita

and agricultural share for each state, for several different years from our sample, relative to
5We also fail to find evidence of a change over time of the relationship, if we restrict the analysis to only

the richer states, or only the high agriculture states. Results available from the authors upon request.
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the median for that year.6 We prefer to use the classification based on 1981, the first year

of our sample, as early values are more likely to be exogenous relative to shocks experienced

during the sample period. However, as Appendix Tables A3 and A4 demonstrate, there

are a lot of relative movements of these variables over time across states. Therefore to test

the robustness of our heterogeneity results, Appendix Table A5 presents the heterogeneous

results, but based on categorising states as poor/rich or high/low agriculture based on 2014

values, the last year of our sample. The magnitudes of our coefficient estimates for “poor”

versus “rich” states are very similar to those in Table 2, although they are estimated with

less precision in the case of the quadratic specification. Over all, we take these results as

suggesting that our “poor” state heterogeneity results are fairly robust to alternate specifica-

tions. For agriculture, if we classify states based on their 2014 values, we find that losses are

greater in high agriculture states, and that the difference is significant at the 90% level for

the quadratic specification, a stronger result than we find in Table 2. Taken as a whole, this

exercise reveals the difficulty of doing a heterogeneity analysis in the context of a country

that is changing dramatically over the sample period.

In Table 3, we explore the robustness of our baseline results to several changes in speci-

fication. Column 1 presents our baseline quadratic specification, for reference. Our baseline

specification includes a control for the one-year lagged growth rate, to address potential

autocorrelation of growth rates. However, controlling for the lagged dependent variable in a

short panel can potentially induce Nickell (1981) bias. To explore whether this is an issue

for us, in Column 2, we drop the lagged growth rate from our regression. The estimated

impact of a 1 ◦C increase (relative to the mean) falls from 2.5 to 1.9 percentage points, and

the estimate loses statistical significance.7 Given our relatively small sample size of about

900 observations, this is perhaps not surprising. However, it is worthwhile to note that

the magnitude of the point estimate is still large and economically significant. Furthermore,
6In Appendix Table A3, values are coloured blue (black) if GSDP per capita in a given year and state

was below (above) that year’s median GSDP per capita, and similarly in Appendix Table A4 for agricultural
shares.

7The R-squared of the regression also falls dramatically, from 0.401 to 0.265.
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along the lines of Figure 1, if we recompute that figure using the new estimates from Column

1, we find that the optimal temperature for economic growth is 17.4 ◦C, which is essentially

unchanged from our baseline specification. Temperatures over 22 ◦C have statistically sig-

nificant losses, relative to this optimum, at the 90% confidence level, and temperatures over

29 ◦C have statistically significant losses at the 95% confidence level.

Our baseline specification uses heteroskedasticity robust standard errors that allow for

the possibility that the residuals in our regression may be heteroskedastic; for example, the

residuals from different states or years may have different variances. In Column 3 of Table 3,

we test the robustness of our results to an alternate standard error specification. Namely, we

use wild cluster bootstrap standard errors, where the unit of clustering is the state or union

territory. Clustered standard errors allow for the possibility that the residuals associated

with a state may be arbitrarily correlated with each other. We choose wild cluster bootstrap

standard errors because our relatively small number of clusters (n=30) implies that regular

cluster-robust standard errors would be downwards biased and hence inappropriate in this

context (Cameron, Gelbach, & Miller, 2008). As can be seen in Column 3, with the use

of the wild cluster bootstrap standard errors, the coefficient on quadratic temperature loses

statistical significance. However, the linear term remains statistically significant at the 5%

significance level, as does the impact of a 1 ◦C temperature increase (relative to the sample

mean). The robustness of our results to an alternate standard error specification is reassuring.

In Column 4 of Table 3, we trim the top and bottom 1% of our observations, by GSDP

growth rates, to verify that our results are not being driven by any outliers. Our results

are robust to this variation in specification. Lastly, in Column 5, we exclude the hilly

states of India, which are substantially colder than the rest of the country, to verify that

these states are not driving our results.8 As can be seen from the table, the coefficients on

linear temperature and quadratic temperature do shift once the hilly states are excluded.

Nevertheless, the magnitude of a 1 ◦C temperature increase (relative to the sample mean) on
8The hilly states that we exclude are Arunachal Pradesh, Himachal Pradesh, Jammu and Kashmir,

Sikkim, and Uttarakhand. These states are small and together represent less than 3% of India’s GDP.
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current growth rates is virtually unchanged, both in size and significance level, demonstrating

that these states are not overly driving our results.

In Table 4, we explore the impacts of temperature on sectoral output. We note that

over our sample period, the primary, secondary, and tertiary sectors contributed an average

of 28%, 26%, and 46%, respectively, to total economic output in India. Columns 1 and 2

look at the primary sector (agriculture, forestry and logging, fishing, and mining). Here

we see large impacts of current temperature on contemporaneous growth rates, as would

be expected. The quadratic specification in Column 2 suggests that a 1 ◦C temperature

increase (relative to the sample mean) would decrease primary sector growth rates that year

by 5.7 percentage points. This point estimate is substantially larger than our estimate for

the impact of temperature on aggregate economic growth rates. But, it is also measured less

precisely, and is only significant at the 90% confidence level.

Columns 3 and 4 of Table 4 look at the secondary sector (manufacturing, construction,

and electricity, gas and water). Here, the point estimates of our coefficients are negative,

but they are dramatically smaller in magnitude than those for the primary sector, and they

are not statistically significant. However, we note that research with micro-data has found

significant impacts of higher temperature on manufacturing in India (Somanathan et al.,

2015). In addition, if we look at the manufacturing sector individually, we do indeed find a

negative and significant effect of higher temperatures on contemporaneous growth rates (re-

sults available upon request). Columns 5 and 6 look at the tertiary sector (transport, storage

and communication, trade, hotels and restaurants, banking, real estate, public administra-

tion, and other services). Here the coefficient magnitudes are similar to what we see for the

secondary sector, but they are more precisely estimated. We find that the impact of a 1 ◦C

increase in temperature (relative to the sample mean) is associated with a 1.2 percentage

point reduction in growth rates that year, and that this estimate is significant at the 90%

confidence level. Our results for the tertiary sector align with the results from Colacito et

al. (2019), who find negative impacts of higher summer temperatures on the service sector
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and the financial sector. Another potential driver behind the tertiary sector results could

be sectoral linkages in the Indian economy (Sastry, Singh, Bhattacharya, & Unnikrishnan,

2003).

5 Level versus growth effects

Having explored the impact of contemporaneous temperatures on growth rates in the same

year, we now explore the impact of lagged temperatures. By simultaneously considering

contemporaneous and lagged temperatures, we can test whether the effect of higher tem-

peratures on economic activity is transitory or whether there is a more permanent impact

on the underlying growth rate itself. To explore this idea, we draw from the discussions

in Dell et al. (2012) and Colacito et al. (2019). We first present a simple model to clarify

the difference between a level effect on output and a growth effect. We then describe our

empirical strategy to test for these effects. Finally, we present our empirical results.

To fix ideas, let us assume that economic output is given by the following equation:

yt = α + yt−1 + β1Tt + β2T
2
t + βlag

l Tt−1 + βlag
2 T 2

t−1 + εt. (3)

In this equation, β1 and β2 capture the nonlinear effect of current temperature on economic

output, while βlag
l and βlag

2 capture the nonlinear effect of lagged temperature on economic

output. To simplify, let us assume that εt = 0 ∀t. Following Colacito et al. (2019), let us

consider the impact of a shock in year t = 1 that permanently raises temperatures by 1 ◦C,

from T0 = 0 to Tt = 1,∀t ≥ 1. This is a simplified way of capturing climate change, which

we just use to fix ideas. Given this hypothetical path of temperatures, we can use equation

3 recursively to calculate both the level of economic output and the growth rate of economic

output in each subsequent year to the temperature increase. We get that:

yt = (y0 + β1 + β2) + (t− 1)[α + (β1 + β2 + βlag
l + βlag

2 )], and (4)
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∆y1 = α + β1 + β2, and ∆yt = α + (β1 + β2 + βlag
l + βlag

2 ),∀t ≥ 2. (5)

Following Colacito et al. (2019), there are three cases of interest. First, if neither contem-

poraneous nor lagged temperature has an effect on economic output, then β1 = β2 = βlag
l =

βlag
2 = 0. Second, if β1 + β2 + βlag

l + βlag
2 = 0, then the 1 ◦C increase in temperature has a

permanent effect on output (as captured by the terms β1 + β2 in equation 5), but it only

affects the growth rate in the first period. This scenario has been referred to as the “level

effects” case. Third, if β1 + β2 + βlag
l + βlag

2 6= 0 then the permanent 1 ◦C increase in tem-

perature will affect both the level of output and the growth rate of output, on an ongoing

basis. We refer to this as the “growth effects” case. Any effects detected under a “growth

effects” scenario will compound over time, leading to greater potential economic losses than

those sustained under the “level effects” scenario.

To test whether the temperature–output relationship in India is best characterised by

a level effects or a growth effects scenario, we follow Dell et al. (2012) and Colacito et al.

(2019) and integrate lagged temperature into our regression specification. Specifically, we

estimate a regression of the format:

∆ys,t =βlTs,t + β2T
2
s,t + βlag

l Ts,t−1 + βlag
2 T 2

s,t−1 + f(Ps,t, Ps,t−1) + ρ∆ys,t−1 + αs + αt + εs,t,

(6)

where Ts,t−1 represents temperature from the previous fiscal year, and f(Ps,t, Ps,t−1) is a

quadratic function of contemporaneous and lagged precipitation. Since temperature is de-

meaned in this regression, the sum of β1, β2, βlag
1 and βlag

2 will capture the impact on growth

rates of a permanent 1 ◦C increase in temperatures, relative to the sample mean temperature

in India.

Table 5 presents our analysis of level effects versus growth effects. Columns 1 and 2
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present our baseline linear and quadratic specifications, for reference, and Columns 3 and 4

integrate controls for lagged temperature. In Columns 3 and 4, the coefficients on contem-

poraneous temperature (and its square) remain negative and in fact increase in magnitude.

In contrast, the coefficients on lagged temperature are positive. This makes sense: if tem-

peratures were high last year, and growth last year was lower than usual as a result, then

growth this year may be relatively higher, as economic output returns to its expected tra-

jectory. When we sum the temperature coefficients to determine the impact of a permanent

1 ◦C increase on growth rates, the point estimate of the effect we find is substantial—a 1

percentage point permanent decrease in growth rates—but it is imprecisely estimated and

not statistically significant. This result holds for both our linear and quadratic specifications,

and is in contrast to Colacito et al. (2019), who find that temperature has significant impacts

on US economic output, both in terms of levels and growth rates.

In considering our growth versus level effects analysis, there are two possibilities. One

possibility is that for the Indian economy, higher temperatures affect economic activity con-

temporaneously, depressing the current growth rate, but do not have persistent effects on

the growth rate. A possible mechanism for this result could be the fact that the Indian

economy is more reliant on agriculture than the US economy: it is possible that shocks to

agricultural growth are less persistent than shocks to the other sectors of the economy. We

note that, when studying a panel of African countries, Abidoye and Odusola (2015), failed to

find evidence of long-run impacts of temperature on growth rates, when looking at five-year

averages, a result that is potentially consistent with what we are finding here. On the other

hand, looking at a global panel of countries, Dell et al. (2012) find that higher temperatures

have a permanent impact on growth rates in poor countries. Therefore, a second, and per-

haps more likely, possibility is that we are insufficiently powered to detect persistent growth

rate effects. To compare to another study that uses subnational data, for example, we note

that Colacito et al. (2019) have a sample size that is over three times as large as ours (2856

observations versus 926 observations).
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6 Conclusion

As climate change accelerates, the economies of low- and middle-income countries may be

especially vulnerable to climate-induced economic damages. In this paper, we explored the

impact of temperatures on economic output in India, using subnational data. We found that

contemporaneous temperature has a large and statistically significant effect on the economic

growth rate in the current year. This effect is robust to multiple variations in specification.

We found evidence of larger impacts in poorer states. Looking at sectoral output, we found

the largest effects come from the primary sector (agriculture, forestry, fishing, and mining).

In contrast to these contemporaneous effects of temperature on current economic output,

we did not find evidence that a permanent 1 ◦C increase in temperature would permanently

reduce the growth rate. This may be because we are relatively underpowered to detect such

an effect, or it may be due to structural differences between the Indian economy as compared

to the US economy (the focus of earlier similar analysis).

Our analysis augments existing sector-specific research on India by providing evidence

of a significant link between temperature and contemporaneous overall economic activity at

the state level. It underscores the potential for uncovering a richer understanding of the

temperature-growth relationship by exploiting information in state-level data that may be

lost through aggregation when only country-level data is used. Our use of subnational data

also facilitates heterogeneity analysis that, by shedding light on specific states in India that

may be most vulnerable to climate change, could potentially inform policy approaches to

mitigation and adaptation.
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Figures

Figure 1: Effects of annual average temperature on GDP growth rates

The figure displays the nonlinear relationship between annual average temperature and GDP
growth rates for the fiscal years 1982-83 to 2014-15. The black line represents the impact
of temperature on growth, relative to the optimum. The shaded blue area denotes the 95%
confidence interval. The regression model controls for one-year lagged growth rates, state
fixed effects, year fixed effects, and precipitation. The histogram shows the distribution of
annual temperature.
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Figure 2: Heterogeneous effects of annual average temperature on GDP growth rates

The figure displays heterogeneous nonlinear relationships between annual average tempera-
ture and GDP growth rates for the fiscal years 1982-83 to 2014-15, for six subgroups (poor
states, rich states, high agriculture states, low agriculture states, pre-1998 observations, and
post-1998 observations). The blue and red lines represents the impact of temperature on
growth, relative to the optimum, for each subgroup. The shaded blue area denotes the 95%
confidence interval for the subgroup denoted with the blue line. The regression model con-
trols for one-year lagged growth rates, state fixed effects, year fixed effects, and precipitation.
The histograms show the distribution of annual temperature, by subgroup.
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Tables
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Table 1: Summary statistics

(1) (2)
Unweighted Weighted

Temperature 20.73 23.74
(6.758) (3.422)

Precipitation 1.479 1.063
(0.800) (0.500)

Growth rate, total 0.0649 0.0630
(0.0591) (0.0524)

Growth rate, primary sector 0.0343 0.0363
(0.114) (0.127)

Growth rate, secondary sector 0.0771 0.0692
(0.123) (0.0770)

Growth rate, tertiary sector 0.0777 0.0766
(0.0489) (0.0380)

Share of GSDP in primary sector 0.284 0.281
(0.124) (0.116)

Share of GSDP in secondary sector 0.256 0.263
(0.0937) (0.0676)

Share of GSDP in tertiary sector 0.459 0.456
(0.116) (0.104)

Observations 926 926

Note: The table displays mean coefficients, with standard
deviations in parentheses. The time period is the fiscal years
1982-83 to 2014-15. In the first column, all state-year ob-
servations are evenly weighted. In the second column, each
state-year observation is weighted by the proportion, aver-
aged over the whole sample, of that state’s GSDP, relative
to the national GDP.
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Table 2: Impact of temperature on growth rates: Baseline results and tests for heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
Growth Growth Growth Growth Growth Growth Growth Growth

Temperature -0.0300∗∗ -0.0237∗∗
(0.0112) (0.0107)

Temperature * Temperature -0.00164∗∗
(0.000696)

Poor * Temperature -0.0415∗∗ -0.0355∗∗
(0.0173) (0.0135)

Poor * Temperature * Temperature -0.00455∗∗∗
(0.00140)

Rich * Temperature -0.0232∗∗∗ -0.0161∗∗
(0.00773) (0.00671)

Rich * Temperature * Temperature -0.00104∗∗
(0.000474)

High agriculture * Temperature -0.0274 -0.0259∗
(0.0165) (0.0149)

High agriculture * Temperature * Temperature -0.00162∗
(0.000825)

Low agriculture * Temperature -0.0329∗∗∗ -0.0207∗
(0.00916) (0.0116)

Low agriculture * Temperature * Temperature -0.00196
(0.00146)

Early * Temperature -0.0306∗∗∗ -0.0235∗∗
(0.0111) (0.0101)

Early * Temperature * Temperature -0.00153∗∗
(0.000693)

Late * Temperature -0.0319∗∗∗ -0.0261∗∗
(0.0113) (0.0104)

Late * Temperature * Temperature -0.00165∗∗
(0.000713)

Observations 926 926 926 926 926 926 926 926
R2 0.3877 0.4008 0.3910 0.4106 0.3880 0.4013 0.3898 0.4036

Note: The regression covers 30 Indian states and union territories, for the fiscal years 1982-3 to 2014-15. Temperature is demeaned relative to
the mean for this sample period. All columns control for one-year lagged growth rates, state fixed effects, and year fixed effects. Each state-year
observation is weighted by the proportion, averaged over the whole sample, of that state’s GDP, relative to the national GDP. Heteroskedasticity
robust standard errors are reported. * p<0.10, ** p<0.05, *** p<0.01
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Table 3: Impact of temperature on growth rates: Robustness

(1) (2) (3) (4) (5)
Growth Growth Growth Growth Growth

Temperature -0.0237∗∗ -0.0169 -0.0237∗∗ -0.0223∗∗ -0.0191∗
(0.0107) (0.0107) (0.0106) (0.00919) (0.0107)

Temperature * Temperature -0.00164∗∗ -0.00167∗∗ -0.00164 -0.00143∗∗ -0.00529∗∗∗
(0.000696) (0.000812) (0.00114) (0.000591) (0.00149)

R2 0.401 0.265 0.418 0.372 0.417
Impact of a 1C increase -0.0253 -0.0186 -0.0253 -0.0237 -0.0244
Wald’s test p-value 0.0274 0.101 0.0180 0.0169 0.0359
Observations 926 926 926 908 777

Note: The regression covers 30 Indian states and union territories, for the fiscal years 1982-
3 to 2014-15. Temperature is demeaned relative to the mean for this sample period. All
columns control for state fixed effects and year fixed effects. Each state-year observation is
weighted by the proportion, averaged over the whole sample, of that state’s GDP, relative
to the national GDP. Column 1 is the baseline specification. Column 2 drops lagged growth
rates as a control. Column 3 uses wild cluster bootstrap standard errors. Column 4 trims
the top and bottom 1% of observations by GDP growth rates. Column 5 excludes the hilly
states. Heteroskedasticity robust standard errors are reported in all columns except Column
3. The impact of a contemporaneous 1 ◦C (relative to the sample mean), is reported for
each column, along with its corresponding p-value. * p<0.10, ** p<0.05, *** p<0.01
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Table 4: Impact of temperature on growth rates. Effects by sector

(1) (2) (3) (4) (5) (6)
Primary Primary Secondary Secondary Tertiary Tertiary

Temperature -0.0814∗∗∗ -0.0532∗ -0.00670 -0.0109 -0.0109 -0.0119
(0.0293) (0.0300) (0.0111) (0.0134) (0.00661) (0.00704)

Temperature * Temperature -0.00381∗∗ -0.00103∗ -0.000771∗∗
(0.00175) (0.000604) (0.000333)

R2 0.339 0.362 0.216 0.218 0.254 0.257
Impact of a 1C increase -0.0570 -0.0119 -0.0127
Wald’s test p-value 0.0684 0.382 0.0864
Observations 926 926 926 926 926 926

Note: The regression covers 30 Indian states and union territories, for the fiscal years 1982-83 to 2014-
15. Temperature is demeaned relative to the mean for this sample period. All columns control for
one-year lagged growth rates, state fixed effects, and year fixed effects. Each state-year observation
is weighted by the proportion, averaged over the whole sample, of that state’s GDP, relative to the
national GDP. Heteroskedasticity robust standard errors are reported. * p<0.10, ** p<0.05, *** p<0.01
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Table 5: Impact of temperature on growth rates. Testing for level versus growth effects

(1) (2) (3) (4)
Growth Growth Growth Growth

Temperature -0.0300∗∗ -0.0237∗∗ -0.0423∗∗∗ -0.0359∗∗∗
(0.0112) (0.0107) (0.0128) (0.0108)

Temperature * Temperature -0.00164∗∗ -0.00197∗∗
(0.000696) (0.000824)

Lagged temperature 0.0322∗∗∗ 0.0264∗∗∗
(0.00958) (0.00847)

Lagged temperature * Lagged temperature 0.00111
(0.000680)

R2 0.388 0.401 0.406 0.424
Impact of a permanent 1C increase -0.0102 -0.0103
Wald’s test p-value 0.288 0.393
Observations 926 926 926 926

Note: The regression covers 30 Indian states and union territories, for the fiscal years 1982-
83 to 2014-15. Temperature is demeaned relative to the mean for this sample period. All
columns control for one-year lagged growth rates, state fixed effects, and year fixed effects.
Each state-year observation is weighted by the proportion, averaged over the whole sample,
of that state’s GDP, relative to the national GDP. Heteroskedasticity robust standard errors
are reported. * p<0.10, ** p<0.05, *** p<0.01
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A Appendix Figures and Tables

Figure A1: Gross domestic product (GDP) of India, 2011 prices (in trillion Rs.)

The figure displays total GDP and GDP by sector for the fiscal years 1981-82 to 2014-15.
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Table A1: Classification of States and Union Territories

State or union territory Income classification Agricultural classification
Andhra Pradesh Poor High
Arunachal Pradesh Rich High
Assam Poor Low
Bihar Poor Low
Chandigarh Rich Low
Chhattisgarh Rich High
Delhi Rich Low
Goa Rich Low
Gujarat Rich Low
Haryana Rich High
Himachal Pradesh Rich High
Jammu and Kashmir Rich High
Jharkhand Poor Low
Karnataka Poor Low
Kerala Poor Low
Madhya Pradesh Rich High
Maharashtra Rich Low
Manipur Poor High
Meghalaya Poor Low
Nagaland Poor Low
Odisha Poor High
Puducherry Rich Low
Punjab Rich High
Rajasthan Poor High
Sikkim Poor Low
Tamil Nadu Rich High
Tripura Poor High
Uttar Pradesh Poor High
Uttarakhand Poor High
West Bengal Rich Low

Note: States are characterised as poor (rich) if their GSDP per capita is
below (above) the median in 1981, the first year of our sample. States
are characterised as high (low) agriculture if their share of agriculture in
GSDP is above (below) the median in 1981. See Section 2 for more details.
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Table A2: Two-Way Frequency Table of Poor States versus High-Agriculture States

High Agriculture Low Agriculture Total
Poor 8 7 15
Rich 7 8 15
Total 15 15 30

Note: States are characterised as poor (rich) if
their GSDP per capita in 1981 is below (above)
the median. States are characterised as high (low)
agriculture if their share of agriculture in 1981 is
above (below) the median. See Section 2 for more
details.
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Table A3: GSDP Per Capita, by Year, 2011 Prices (Thousands of Rs.)

State 1981 1991 2001 2011 2014
Andhra Pradesh 16.983 19.844 37.991 73.317 102.017
Arunachal Pradesh 18.846 31.970 36.023 63.492 68.604
Assam 14.785 17.099 27.257 45.418 50.401
Bihar 14.384 17.017 13.262 24.000 27.581
Chandigarh 45.135 65.283 111.017 177.650 215.222
Chhattisgarh 20.495 24.166 27.820 60.704 71.349
Delhi 45.135 65.283 85.595 180.992 209.904
Goa 36.062 56.343 93.534 275.698 212.304
Gujarat 23.178 27.448 44.364 92.951 111.551
Haryana 26.478 38.137 56.304 108.270 124.004
Himachal Pradesh 19.110 24.252 51.471 106.675 125.799
Jammu and Kashmir 17.446 17.513 32.529 60.904 62.167
Jharkhand 14.384 17.017 24.299 43.430 49.661
Karnataka 17.323 24.845 39.666 91.750 108.677
Kerala 16.346 20.884 46.871 103.143 119.226
Madhya Pradesh 20.495 24.166 26.217 43.039 49.093
Maharashtra 26.423 36.931 51.702 102.793 116.204
Manipur 15.855 20.378 28.162 49.019 54.343
Meghalaya 15.211 20.561 34.650 65.869 64.937
Nagaland 17.594 21.528 36.247 65.261 74.834
Orissa 13.704 16.756 24.255 53.792 61.784
Puducherry 29.971 32.330 79.991 120.848 138.118
Punjab 31.692 42.159 58.044 94.396 103.643
Rajasthan 14.197 19.650 31.534 62.847 69.479
Sikkim 17.082 37.501 38.041 179.947 199.073
Tamil Nadu 17.937 25.014 44.615 97.148 110.043
Tripura 13.428 18.016 36.494 55.519 70.486
Uttar Pradesh 14.830 18.934 21.824 34.931 38.718
Uttarakhand 14.830 18.934 34.833 110.028 126.567
West Bengal 18.049 24.350 37.267 56.404 67.029
Median 17.520 24.166 36.881 69.593 88.425
Note: Values are coloured blue (black) if GSDP per capita in a
given year and state was below (above) that year’s median GSDP
per capita. GSDP per capita is unavailable for Chandigarh prior to
2001, so it is imputed with the values of Delhi, the most comparable
unit.
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Table A4: Agricultural Share of GSDP, by Year

State 1981 1991 2001 2011 2014
Andhra Pradesh 0.450 0.362 0.285 0.286 0.300
Arunachal Pradesh 0.478 0.442 0.282 0.307 0.292
Assam 0.416 0.377 0.328 0.243 0.235
Bihar 0.412 0.343 0.329 0.281 0.225
Chandigarh 0.039 0.028 0.010 0.007 0.005
Chhattisgarh 0.493 0.388 0.251 0.212 0.190
Delhi 0.039 0.028 0.013 0.008 0.004
Goa 0.187 0.123 0.100 0.067 0.089
Gujarat 0.400 0.227 0.181 0.190 0.160
Haryana 0.508 0.436 0.281 0.233 0.186
Himachal Pradesh 0.478 0.355 0.255 0.211 0.192
Jammu and Kashmir 0.474 0.375 0.313 0.188 0.155
Jharkhand 0.412 0.343 0.221 0.175 0.154
Karnataka 0.448 0.344 0.244 0.139 0.116
Kerala 0.352 0.328 0.212 0.155 0.123
Madhya Pradesh 0.493 0.388 0.272 0.316 0.331
Maharashtra 0.273 0.175 0.155 0.128 0.099
Manipur 0.448 0.351 0.290 0.242 0.233
Meghalaya 0.357 0.238 0.222 0.172 0.188
Nagaland 0.313 0.295 0.319 0.388 0.375
Orissa 0.513 0.369 0.315 0.209 0.203
Puducherry 0.180 0.144 0.060 0.058 0.056
Punjab 0.499 0.484 0.362 0.322 0.276
Rajasthan 0.505 0.414 0.324 0.306 0.280
Sikkim 0.505 0.399 0.215 0.085 0.079
Tamil Nadu 0.275 0.233 0.166 0.127 0.119
Tripura 0.500 0.377 0.272 0.349 0.372
Uttar Pradesh 0.500 0.418 0.337 0.274 0.235
Uttarakhand 0.500 0.418 0.247 0.139 0.116
West Bengal 0.276 0.304 0.294 0.176 0.158
Median 0.448 0.353 0.264 0.199 0.187
Note: Values are coloured blue (black) if agricultural share
of GSDP in a given year and state was above (below) that
year’s median agricultural share of GSDP. Agricultural share
of GSDP is not available for Chandigarh prior to 2001, so we
impute it with the values of Delhi, the most comparable unit.
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Table A5: Impact of temperature on growth rates: Heterogeneous effects using 2014 values

(1) (2) (3) (4)
Growth Growth Growth Growth

Poor * Temperature -0.0388∗∗ -0.0304∗
(0.0163) (0.0152)

Poor * Temperature * Temperature -0.00133
(0.000829)

Rich * Temperature -0.0249∗∗∗ -0.0147
(0.00868) (0.00904)

Rich * Temperature * Temperature -0.00202∗∗
(0.000951)

High Agriculture * Temperature -0.0364∗∗ -0.0334∗∗
(0.0160) (0.0138)

High Agriculture * Temperature * Temperature -0.00250∗
(0.00141)

Low Agriculture * Temperature -0.0242∗∗ -0.0130
(0.00925) (0.00857)

Low Agriculture * Temperature * Temperature -0.00105∗
(0.000562)

Observations 926 926 926 926
R2 0.3902 0.4122 0.3891 0.4123

Note: The regression covers 30 Indian states and union territories, for the fiscal years 1982-3
to 2014-15. Temperature is demeaned relative to the mean for this sample period. All columns
control for one-year lagged growth rates, state fixed effects, and year fixed effects. Each state-year
observation is weighted by the proportion, averaged over the whole sample, of that state’s GDP,
relative to the national GDP. Heteroskedasticity robust standard errors are reported. * p<0.10,
** p<0.05, *** p<0.01
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