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Abstract

More than one billion people worldwide receive cash or in-kind transfers from social

protection programs. In low-income countries, these transfers are often conditioned on

participation in labor-intensive public works to rehabilitate local infrastructure or natu-

ral resources. Despite their popularity, the environmental impacts of public works pro-

grams remain largely undocumented. We quantify the impact on tree cover of Ethiopia’s

Productive Safety Net Program (PSNP), one of the world’s largest and longest-running

public works programs, using satellite-based data of tree cover combined with difference-

in-differences and inverse probability treatment weighting methodologies. We find that

the PSNP increased tree cover by 3.8% between 2005 and 2019, with larger increases

in less densely populated areas and on steep-sloped terrain. As increasing tree cover

is considered an important strategy to mitigate global warming, our results suggest a

win-win potential for social safety net programs with an environmental component.
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1 Introduction

Reducing poverty while addressing climate change and restoring terrestrial ecosystems are

critical challenges that lie at the core of the United Nations Sustainable Development Goals

(SDGs) (United Nations, 2015). Despite sub-Saharan Africa’s impressive economic growth

over the past two decades (Beegle et al., 2018a), this region is projected to host the greatest

number of poor and undernourished people in the world by 2030 (FAO et al., 2020; Yonzan

et al., 2020). Moreover, rapid population growth combined with climate change are likely

to hasten environmental degradation in the region (Bradshaw and Di Minin, 2019; Olsson

et al., 2019). To address these challenges, governments and international organizations are

turning to social safety net programs that provide cash or in-kind transfers to the poorest

and most vulnerable segments of society (World Bank, 2018; Kuriakose et al., 2013). It is

estimated that more than one billion people worldwide receive assistance from such programs

(Alderman et al., 2017). Since 2000, the number of safety net programs in sub-Saharan Africa

has doubled (Hickey et al., 2018) and today, all 46 sub-Saharan countries implement at least

one program (Beegle et al., 2018b).

While safety net programs have generally been found to improve food security and in-

crease asset accumulation (Beegle et al., 2018b; Hidrobo et al., 2018), the evidence on their

environmental impacts remains mixed. Studies linking safety net programs to environmen-

tal outcomes have been largely limited to cash transfer programs conditioned on beneficiary

households meeting health or education related objectives. For example, Mexico’s Oportu-

nidades program (which provided conditional cash transfers for school attendance, health

clinic visits, and nutritional support) increased deforestation, with larger impacts found

in poorer and more remote communities (Alix-Garcia et al., 2013). In contrast, Indone-

sia’s Keluarga Harapan program (which provided conditional cash transfers if households

accessed specific health and educational services) reduced expected deforestation (Ferraro

and Simorangkir, 2020). Brazil’s Zero Hunger social protection program, which includes a

conditional cash transfer component (conditioned against on child school attendance and
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family health checks) had mixed impacts on natural vegetation cover, which varied by biome

(Dyngeland et al., 2020).

Many safety net programs include public works components, which hold particular promise

in delivering on both social and environmental objectives. In these programs, beneficiary

households receive cash or in-kind transfers conditioned on labor-intensive works that aim

to build or restore community assets, such as roads, schools, or degraded natural resources

including communal lands and forests (Beegle et al., 2018b; Subbarao et al., 2012). Public

works programs are particularly popular in South-Asia and sub-Saharan Africa, with the

largest programs found in India and Ethiopia covering millions of beneficiaries (World Bank,

2018). Globally, it is estimated that more than $10 billion USD are spent annually on public

works programs that provide work to almost 70 million people (McCord and Paul, 2019). De-

spite their popularity, the extent to which public works programs generate public goods that

promote development and environmental sustainability remains poorly understood (Beierl

and Grimm, 2019; Gehrke and Hartwig, 2018; Ravallion, 2019).

We examine the effects of Ethiopia’s Productive Safety Net Program (PSNP) on tree

cover between 2005 and 2019 and estimate how potential carbon sequestration benefits may

offset the administrative costs of the program and reduce CO2 emissions. With eight million

beneficiaries (World Bank, 2020), the PSNP is the largest public works program in the world

outside of India (World Bank, 2018). Being implemented by the government of Ethiopia,

its design and success at achieving social protection gains has made it a model for other

social protection programs on the African continent (Monchuk, 2013). The purpose of the

PSNP is to relieve poverty and food insecurity through cash or in-kind transfers in exchange

for labor on public works designed to build sustainable community assets that increase

communities’ resilience to shocks (MoARD, 2006; Wiseman et al., 2010). The public works

projects are identified and designed by the communities themselves with technical support

from higher administrative levels (MoARD, 2006; Wiseman et al., 2010). The focus of

these work projects has largely been soil and water conservation activities like terracing,

3



embankments, gully check dams, water-infiltration trenches, and especially reforestation

(MoARD, 2006; Wiseman et al., 2010).

These environmental activities of the PSNP can potentially help to alleviate the negative

impacts of climate change, contribute to climate change mitigation, and restore terrestrial

ecosystems. Among these, the PSNP’s potential to increase tree cover is of particular inter-

est in this paper. Deforestation and land degradation are major environmental problems in

Ethiopia (Lemenih and Kassa, 2014) with the former being a substantial source of carbon

emissions worldwide (IPCC, 2019). In the last three decades, Ethiopia is estimated to have

lost 33,400 km2 of forest cover (falling from 204,100 km2 in 1990 to 170,700 km2 in 2020)

(World Bank, 2021). Globally, the urgency to maintain and increase tree cover has launched

several initiatives including the Bonn Challenge (International Union for Conservation of Na-

ture, 2021), the New York Declaration on Forests (Climate and Land Use Alliance, 2021), and

the African Forest Landscape Restoration Initiative, AFR100 (African Union Development

Agency, 2021), to which Ethiopia is a major contributor. Forests and trees play a key role

in the regulation of water, energy, and carbon cycles and have climatic and environmental

benefits that support adaptation and mitigation strategies for climate change (Ellison et al.,

2017). Trees reduce erosion, stabilize water supply, increase soil fertility, and can exert a

cooling effect and promote rainfall—making communities more resilient against adverse im-

pacts of climate change (Zuazo and Pleguezuelo, 2009; Ellison et al., 2017). In addition, the

relatively high rate of carbon sequestration of trees makes increasing tree cover an important

global warming mitigation strategy, among others (Griscom et al., 2017; Masson-Delmotte

et al., 2018).

Independent evaluations show that the PSNP has been successful in improving house-

hold food security, resilience, and asset levels (Hoddinott et al., 2012; Berhane et al., 2014;

Knippenberg and Hoddinott, 2017). These studies used a large panel dataset representative

of all areas of PSNP implementation. The few impact evaluations focused on the PSNP’s

environmental outcomes, however, have focused on a much smaller geographic area using
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households surveys. These studies have investigated participants’ investments in sustainable

land management practices like soil erosion and soil fertility practices in two districts (Adi-

massu and Kessler, 2015) and household-level livestock and tree holdings in six sub-districts

(Andersson et al., 2011). While household soil management and tree planting strategies

can have positive environmental effects, these studies did not have sufficiently broad data

to quantify the size of a program-wide benefit from these activities. In addition, PSNP’s

potential for climate change adaptation and mitigation is largely unknown, although it is

increasingly being recognized (Subbarao et al., 2012). Relevant empirical studies include

Conway and Schipper (2011)’s analysis of mainstreaming climate risk adaptation actions

into development initiatives using a case study on drought risk financing mechanisms within

the PSNP, and Woolf et al. (2018)’s estimation of PSNP’s Global Greenhouse Gas (GHG)

reduction based on 24 site surveys on sustainable land, soil, and water practices using an

IPCC based modeling approach.

This study advances our understanding of the PSNP’s environmental outcomes and its

potential for climate change mitigation by providing a robust impact evaluation of the PSNP

on tree cover. In the context of existing studies of the PSNP, our study is novel in three ways.

First, we use an econometric method to assess the impact of the PSNP by applying difference-

in-differences and inverse probability treatment weighting methods to construct a credible

counterfactual (i.e., what the tree cover would have been had the PSNP area not received the

program). Second, we use satellite imagery on tree cover and other spatial variables allowing

us to cover a larger area consistently throughout the study period. Finally, we estimate how

the social benefits from the estimated tree growth could offset the administrative costs of

the program.
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2 Ethiopia’s Productive Safety Net Program (PSNP)

Ethiopia is the second most populous country in Africa, with a population of over 110

million, projected to increase 2.5% annually (World Bank, 2021). Rainfed agriculture forms

a major component of the national economy providing livelihoods to approximately 80% of

the population. Ethiopia’s history is characterized by catastrophic droughts that triggered

the large-scale famines in the 1970s and 1980s. Meanwhile, the 1990s and early 2000s were

characterized by localized food shortages that were typically addressed by ad hoc requests for

humanitarian food aid (De Waal, 2017). Despite substantial economic growth coupled with

major improvements in various domains of health and development over the last two decades,

the country remains vulnerable to droughts and flooding with climate change expected to

further intensify these adverse weather events (Conway and Schipper, 2011; Alemu and

Mengistu, 2019; Federal Democratic Republic of Ethiopia, 2021; Funk et al., 2008).

Launched in February 2005, the PSNP was designed as a multiyear food security program

to provide a more sustainable response mechanism than the existing recurring ad hoc human-

itarian appeals (Wiseman et al., 2010). The households benefiting from the PSNP receive

food or cash payments in return for labor-intensive public works carried out over a six-month

period outside of the main agricultural season while a small share of households with limited

labor capacity (e.g., pregnant and lactating women, elderly) receive unconditional transfers.

At the onset of the program, there were 192 districts (woredas, 3rd-level administrative

division in the country) with 4.8 million beneficiaries in the four highland regions (Amhara;

Oromia; Southern Nations, Nationalities and Peoples’ Region; and Tigray), as well as smaller

and predominantly urban regions in the east (Dire Dawa and Harar) (World Bank, 2020).

Since the launch of the PSNP, caseloads in the original PSNP districts in the highland regions

increased and the program expanded to Ethiopia’s lowland regions (Afar and Somali). By

2019, the PSNP operated in more than 300 districts, providing support for approximately

eight million people (World Bank, 2020). So far, none of the districts selected into the PSNP

have exited the program (World Bank, 2020).
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The PSNP combines geographic and community level targeting. Districts were initially

selected to the program based on the frequency they had requested and received emergency

food assistance prior to the launching of the program in 2005 (World Bank, 2020; MoARD,

2006). Communities themselves then select the most food-insecure households as PSNP

beneficiaries. Evaluations based on household data collected from the PSNP localities show

that the program is relatively well targeted at the community level (Coll-Black et al., 2011).

However, a recent assessment of the geographic targeting suggests that many poor and food

insecure districts are not included into the PSNP (World Bank, 2020).

Our analysis measures the impact of the PSNP on tree cover in the participating districts

of four highland regions (Amhara; Oromia; Southern Nations, Nationalities and Peoples’

Region; and Tigray) (Fig.1A). The reasons for this geographic restriction were three-fold.

First, the public works program has operated the longest time in these highland regions,

permitting a longer time window to observe impacts on tree cover. We also note that

the highland regions did not have a staggered roll-out of the program. Second, while the

program has expanded to other regions since its inception, the focus on the highland regions

has remained. In 2019, more than 70% of all PSNP beneficiaries originated from the four

highland regions. Third, compared to the two lowland regions, the PSNP has been relatively

better-implemented in the highland regions (Sabates-Wheeler et al., 2013; Lind et al., 2021).

3 Spatial data

We used the Vegetation Continuous Fields percent tree cover data (VCF-TC) L3, Collection

6, product from the MOderate Resolution Imaging Spectrometer (MODIS) (DiMiceli et al.,

2015) for the period 2000-2019 as our outcome variable (Fig. 1B).

VCF-TC’s widely used applications include forest change assessments across time and

space (Cuaresma et al., 2017; Ryan et al., 2017; Gao et al., 2018), biomass and carbon

emissions estimates (Zomer et al., 2016; Anaya et al., 2009; Rodríguez-Veiga et al., 2016; Tang
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Figure 1: Map of Ethiopia showing the highland study region and the spatial variables
used in this study over a hill-shaded terrain. The area of the non study region has a light
transparency effect applied for added context. A: Study region with the PSNP districts
(boundaries not shown) in light brown and the non-PSNP districts in beige. B: Percent
change in tree cover based on the mean VCF-TC values of the period preceding the PSNP
(2002-2004) and the last-PSNP period (2017-2019). C: Population density, 2005. D: Terrain
slope. E: Land cover type aggregated into eight categories, 2005. The cropland category
includes natural vegetation mosaics from 40 to 60%. F: Mean annual rainfall between 2005
and 2019. Water bodies are only shown in the study region. See Table A1 for data sources.
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et al., 2021), biodiversity and conservation (Miles et al., 2006; Vijay et al., 2016), payment

for ecosystem services (Phan et al., 2018), the parametrization of environmental and climate

models (Lawrence and Chase, 2017; Forrest et al., 2020), and as input or integrated use with

Landsat data for forest cover mapping (Hansen et al., 2008; Sexton et al., 2013).

Collection 6 is the most accurate MODIS fractional cover product to date and has been

improved from previous collections with updated input data (DiMiceli et al., 2021). The

data are distributed as a global tiled grid in Sinusoidal projection at a spatial resolution of

250m. We mosaicked the VCF-TC tiles to cover Ethiopia throughout the study period and

integrated them with the data described below in Sinusoidal projection using ArcGIS 10.7

(ESRI, 2019) and Terrset (Clark Labs, 2019).

Previous research using VCF-TC has noted that year-to-year variation in tree cover

estimates appears to be higher than expected and may be driven by the quality of the

underlying remote sensing data and precipitation, among other factors (Zomer et al., 2016;

Gao et al., 2018), which discourages its use for inter-annual comparisons. To mitigate this

issue we followed Zomer et al. (2016) and calculated three-year averages of tree cover for

our analysis (except for the first period which is based on a two-year average): 2000–2001;

2002–2004; 2005–2007; 2008–2010; 2011–2013; 2014–2016; 2017–2019.

Each VCF-TC pixel was coded to indicate its participation (or not) in the PNSP (Fig.

1A) and matched to its corresponding district and region using the district boundaries from

Ethiopia’s Central Statistical Agency in 2007 (unpublished data) and the PSNP district

administrative records. In addition, we obtained the annual PSNP beneficiaries at district

level by digitizing PSNP’s annual planning documents drafted by the Ministry of Agriculture

of Ethiopia. We used the year 2007 as a benchmark for the administrative units since it

matches with the latest Ethiopian census year with corresponding administrative boundaries.

Increases in the number of PSNP-eligible highland districts from the census year onward were

due to administrative divisions of the districts (Wiseman et al., 2010), which we dealt with

by merging the child districts back to their parent district as of 2007 along with the number
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of PSNP beneficiaries. After removing pixels flagged as no data or over large bodies of water,

the area of our study region was approximately 61.4 million Ha (about 11.4 million of pixels),

including 617 districts. Of these pixels, 49.5% were located in participating PSNP districts

(247 districts).

In addition, we used several datasets to generate spatial variables as controls and to

explore impact heterogeneity. These included: population density per km2 from the Gridded

Population of the World, 2005 (GPW) (CIESIN: Center for International Earth Science

Information Network, Columbia University, 2016) (Fig. 1C ), elevation from the Shuttle

Radar Topography Mission (SRTM), a global digital elevation model (DEM) of the world

(USGS EROS, 1996) from which we also derived the slope (Fig. 1D), and land cover type at

the onset of the program in 2005 from MODIS (MCD12Q1) (Friedl and Sulla-Menashe, 2015).

We used the International Geosphere-Biosphere Programme (IGBP) land cover classification

scheme and aggregated the land over classes into eight categories for mapping purposes (Fig.

1E ). The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) annual

rainfall data (Funk et al., 2015) (Fig. 1F ) from 1995 to 2019 was used to control for rainfall.

We also used the aboveground live woody biomass density dataset (AGBM) for the year

2000 (Zarin et al., 2016) distributed by the Global Forest Watch (GFW) to estimate the av-

erage AGBM (in megagrams biomass ha-1) corresponding to different tree cover percentages

as the first step of the carbon sequestration and the benefit-cost analyses.

Lastly, the quality flag information provided with VCF was used to assess the sensitivity of

our results to the uncertainty in tree cover estimates associated with data quality. The quality

information of the input MODIS surface reflectance data used to predict the vegetation cover

is provided as a separate quality band indicating if a pixel in any of the eight input data

periods used to generate the annual product is flagged as poor quality due to clouds, high

aerosol levels, cloud shadows, or having a view zenith angle higher than 45° (Townshend et al.,

2017). Estimates of vegetation cover with two or more flags in a year may be erroneous and

should be used with caution (Townshend et al., 2017).
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Table A1 in the Appendix summarizes the characteristics of the datasets used. For more

details about VCF and the spatial methods see Section A.1 in the Appendix, DiMiceli et al.

(2021), Townshend et al. (2017), and Hansen et al. (2003).

4 Methods

4.1 Impact of PSNP on tree cover

We evaluated the impact of the PSNP program on tree cover by applying a difference-in-

differences method. Specifically, we estimated the difference in tree cover before and after the

PSNP program began, and in participating PSNP districts versus non-PSNP participating

districts (Fig. 1A). Implementing our difference-in-differences method using a regression

approach, we estimated:

ln(TCiwrt) =�PSNPw + �(PSNPw ⇤ POSTt) + �Xit + ↵rt + uiwrt (1)

where TCiwt is the mean percent of tree cover in pixel i in district w in region r during

the three-year period t. PSNPw is a binary variable that is defined at the district level;

it equals one if the pixel belongs to a district that was selected into the program in 2005–

2006 and equals zero otherwise. The variable POSTt equals one if period t occurs after

the 2005 launch of the PSNP (i.e., periods 2005–2007, 2008–2010, 2011–2013, 2014–2016, or

2017–2019) and equals zero if the period occurs before the PSNP launch (i.e., 2000–2001 or

2002–2004). We controlled for mean annual rainfall in pixel i in period t (Xit) as well as

all period- and region-specific aggregate shocks through period-by-region fixed effects (↵rt).

The term uiwrt represents the error term. The impact of the PSNP on the change in log of

tree cover is measured by �; the coefficient on the interaction between PSNPw and POSTt.

We converted these coefficients to percentages using the following formula: (e� – 1) * 100.

Finally, we clustered our standard errors at district level; i.e., at the level in which the
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treatment variable was defined (Abadie et al., 2017).

The key identifying condition of the difference-in-differences method in our application

is that tree cover in the pixels within treatment (PSNP) and control (non-PSNP) districts

was on a parallel trend before the program began in 2005. Ethiopian highlands are ex-

tremely diverse agro-ecologically, ranging from rugged high altitude plateaus in the north

and central to arid and semi-arid terrains in the south (see Fig. 1F ). The western highlands

enjoy reliable and abundant rainfall, while the conditions in the east—where most PSNP

districts are located—are generally drier with more erratic rainfall (Fig. 1F ). Unsurpris-

ingly then, the parallel trend hypothesis was rejected when we used all non-PSNP pixels in

the highland regions as our control areas (Table A4 in the Appendix). To address this, we

first restricted the analysis to PSNP and non-PSNP pixels that had similar agro-ecological

conditions before the program was launched in 2005. To do so, we used a propensity score

matching algorithm (Rosenbaum and Rubin, 1983) to identify an area of common support

(Caliendo and Kopeinig, 2008); a set of PSNP and non-PSNP pixels with sufficient overlap

in predicted probability to be included into the program based on selected agro-ecological

and socio-economic characteristics (Fig. A1-A3 in the Appendix). As matching covariates,

we considered variables that were likely to capture this agro-ecological heterogeneity and

thus correlate with selection into the program in 2005-2006: mean and standard deviation

of annual rainfall in 1995-2004 (and their quadratics), population density in 2005, elevation

and the slope of land (Table A5 in the Appendix). Finally, since the PSNP implementation

and targeting benchmarks vary across administrative regions (Wiseman et al., 2010), we also

included binary indicators for each region in our matching model. We defined the area of

common support as pixels with the estimated propensity score within the [0.1; 0.9] interval

(Crump et al., 2009) (Table A6).

We then used these pixel-level propensity scores (PS) to calculate inverse probability

treatment weights (IPTW) (Joffe et al., 2004; Abadie, 2005): 1/PS for the treated (PSNP)

pixels and 1/(1 � PS) for the untreated (non-PSNP) pixels. After restricting the pixels in
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our data set to common support and applying IPTW on our regression model, the parallel

trend assumption was satisfied; we cannot reject the null hypothesis that the tree cover

in the PSNP and non-PSNP districts areas were on a similar trend before the PSNP was

launched in 2005 (Table A4, Col.7 in the Appendix). The matching covariates were also in

balance after restricting pixels to the common support and applying IPTW (Table A7 in

the Appendix). Once we restricted the area to the common support, the final data used in

the analysis had approximately 6.5 million pixels (53% from PSNP districts), coming from

513 districts (227 of which were PSNP districts). Section A.2 in the Appendix provides

more information about our impact evaluation approach. Fig. A4-A6 in Section A.3 in the

Appendix show the distributions of key variables used in the analyses, after restricting to

the area of common support.

4.2 Spatial variability of tree cover change

We explored heterogeneity in impact across socio-economic and environmental characteristics

at pixel-level (see Section A.4 in the Appendix). First, as the PSNP is a rural public works

program, ideally we would have restricted the analysis to rural areas only. However, Ethiopia

does not have an official definition for rural areas based on population density (Schmidt

et al., 2018). Mindful of this ambiguity, we estimated the impacts for all pixels as well as

for rural pixels based on two different population density thresholds. Following the recent

recommendation made by international organizations (EU et al., 2020), we defined rural

areas as pixels that fall below 300 people per km2. As an alternative definition for rural

areas, we used 150 people per km2 population density threshold based on previous work in

Ethiopia (Schmidt et al., 2018; Schmidt and Kedir, 2009). Second, the PSNP was specifically

designed with the objective of rehabilitating sloped areas in mind (MoA, 2010). Sloped areas

are also less suited for agriculture due to the increased risk of erosion and soil degradation,

problems that increase with the level of slope (Shaxson, 1999). We therefore hypothesized

that the PSNP’s impact on tree cover was likely to be larger in sloped terrain. To explore
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this, we sequentially restricted the analysis to quintiles based on the level of slope. Third, we

explored whether the impacts varied by the type of land cover at the onset of the program

in 2005. We aggregated land cover types derived from MODIS into Forests and woody areas

(7.6 % of all pixels), Croplands (25.7 %), Grasslands (43.6 %), and Savannas (22.8 %).

Pixels categorized as urban, wetland, water, or barren (0.3 % in total) were not considered

(Tables A2-A3 in the Appendix). Finally, we explored whether the impacts were larger in

districts that had more PSNP beneficiaries relative to their total population compared to

districts that had fewer. To do this analysis, we computed the average number of PSNP

beneficiaries in each district over the study period and divided this number by its total

population. Using this variable as our measure of beneficiary caseload intensity, we split

the pixels originating from the PSNP districts into two groups using the median caseload

intensity as the threshold. We then replaced our treatment variable with these two binary

variables and reran the regression.

4.3 Spillover analysis

We estimated the percent tree cover change in non-PSNP districts adjacent to PSNP districts

to assess if the PSNP had an spillover effect into neighboring non-PSNP districts that could

have affected our results. First, we identified the pixels from 134 districts that did not

benefit from the PSNP but shared an administrative border with a PSNP district through

spatial analysis. We then appended the estimated model with an additional treatment

variable capturing these adjacent non-PSNP districts to assess the degree of spillover effects

on change in tree cover on the non-PSNP districts (see Section A.5 in the Appendix for more

details).
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5 Results

5.1 Change in tree cover

We found that tree cover increased on average by 3.8% in the PSNP participating districts

(95% CI: 0.0006; 0.0777) of the highland regions in Ethiopia (Fig. 2A). When we disaggre-

gated by population density (Fig. 1C ), we found that the impact estimates were larger for

less densely populated areas. Specifically, the estimated impact was 4.4% (95% CI: 0.0051;

0.0843) in areas with less than 300 people per km2 and 6.0% (95% CI: 0.0142; 0.1078) when

a more stringent threshold of 150 people per km2 was used (Fig. 2A).

The positive impacts on tree cover were also larger on steeper sloped land areas (Fig. 2B).

For the middle quintile (average slope ranging between 5.8 and 10.7 degrees), we estimated

that the PSNP increased tree cover by 5.6% (95% CI: 0.0047; 0.1089). The estimated impact

was largest at the 4th quintile (10.7 to 19.1 degrees) of the slope distribution; 7.5% (95%

CI: 0.0352; 0.1161). The estimated impacts by terrain slope were consistently larger in

magnitude when we restricted the area to less densely populated areas (Fig. A7-A8 in the

Appendix).

In addition, we documented statistically significant impacts in areas classified as forests

and woody areas (see Table A3 in the Appendix for exact aggregation) and cropland, but not

in grasslands or savannas (Fig. 2C ). In forests and woody areas, we estimated that the PSNP

increased tree cover by 11.4% (95% CI: 0.0169; 0.2195) and in croplands by 3.7% (95% CI:

0.0075; 0.0682). The magnitudes of the corresponding impact estimates were sizably larger

when we restricted the area of analysis to less densely populated pixels (Fig. A9-A10 in the

Appendix).

Lastly, we also found that the impacts on tree cover were larger in districts that had a

large number of PSNP beneficiaries relative to their total population compared to districts

that had relatively fewer PSNP beneficiaries (Fig. A11 in the Appendix). We did not detect

statistically significant spillover effects to districts directly adjacent to the PSNP districts
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Figure 2: The PSNP increased tree cover, particularly in less densely populated areas and
steep sloped terrains. Tree cover also increased in forests and woody areas (see Table A3
for exact aggregation) and in croplands, based on land cover classifications defined at the
onset of the program in 2005. Estimates measure % change in tree cover due to the PSNP
calculated using pixel-level observations. All estimates are based on a difference-in-differences
method combined with an inverse probability treatment weighting. The unit of observation
is a pixel observed periodically. The 95% confidence intervals are computed from standard
errors clustered at the district level. A: Impact estimates for all pixels in the study region
(N=45,229,114) and for rural areas defined as population density <300 people per km2

(N=42,977,984) and <150 people per km2 (N=35,702,079). B: Impact estimates by terrain
slope quintiles: 1st quintile (Q1): 0.0 to 2.9 degrees (N=10,403,050); 2nd quintile (Q2): 3.3
to 5.6 degrees (N=7,954,821); 3rd quintile (Q3): 5.8 to 10.7 degrees (N=8,781,612); 4th
quintile (Q4): 10.7 to 19.1 degrees (N=9,055,319); 5th quintile (Q5): 19.1 to 78.4 degrees
(N=9,034,312). C: Impact estimates for different land cover types at the onset of the program
in 2005: Forests (N=1,956,304); Croplands (N=16,631,643); Grasslands (N=18,452,994);
Savannas (N=8,178,569).
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(see Fig. A12 in the Appendix).

5.2 Carbon sequestration and benefit-cost analysis

We estimated the carbon sequestered by increased tree cover over the period 2005–2019

based on our finding that, controlling for rainfall, tree cover in PSNP districts increased

by 3.8% on average (95% CI: 0.0006; 0.0777) (Figure 2A) from 2000–2004 levels relative to

changes in tree cover in non-PSNP districts during the same period. Changes in tree cover

were converted to sequestered carbon using the VCF-TC data and average aboveground live

woody biomass (AGBM) from the Global Forest Watch Data (Zarin et al., 2016) in metric

tons of biomass per Ha for the year 2000. First we calculated the estimated average of

AGBM corresponding to the percent tree cover at pixel level in 2000. Then we used our

regression estimates, along with the baseline levels of tree cover in 2000 to estimate the

predicted increase in tree cover (and hence AGBM), due to the PSNP and converted this

biomass to carbon.

We found that the average increase in biomass per VCF-TC pixel due to the increased

tree cover was 1.12 metric tons per Ha, which is equivalent to an estimated 62.4 million

metric tons of negative CO2 emissions (95% CI: 1.1 to 113.5; note that this and subsequent

confidence intervals are non-symmetrical relative to the point estimate, due to the nonlinear

relationship between tree cover and AGBM). This is equivalent to 4.16 million metric tons

annual negative CO2 emissions.

To estimate the benefit-cost ratio of the negative carbon emissions relative to the PSNP’s

cost we used the social cost of carbon (SCC) estimate from Interagency Working Group on

Social Cost of Greenhouse Gases (2016), along with the report’s median assumption of 3% for

the discount rate and 2.2% for the average growth rate of the SCC to calculate the benefits.

We then used information on the administrative costs of the PSNP program from Drechsler

et al. (2017) and benchmarked the social benefits of negative CO2 emissions against the

implementation costs of the program under the four scenarios shown in Table 1. We note
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that other factors that can affect carbon sequestration estimates, including species type,

carbon uptake rate, and planting location (Holl and Brancalion, 2020; Griscom et al., 2017;

Kirby and Potvin, 2007; Schulp et al., 2008), were not considered.

The benefit-cost ratio of the carbon stored in the tree cover results indicate that the

social benefits of the carbon sequestered by the program could offset as much as 49% of the

administrative costs of the program (Table 1), although the magnitude of the carbon storage

benefits depends heavily on how long the increase in tree cover is preserved.

Table 1: Benefit-cost analysis of the PSNP for carbon storage

How many years until Benefit-cost ratio for
Scenario trees are cut? carbon storage
1 Trees never cut 0.495
2 50 years 0.160
3 30 years 0.103
4 15 years 0.055

Note: This table compares the social benefits of the
negative carbon emissions from the PSNP against the
PSNP program implementation costs. The table does
not factor in any other PSNP program benefits (such as
poverty alleviation). Each row corresponds to a different
assumption of how many years elapse before the trees
are cut and carbon is released into the atmosphere.

5.3 Robustness checks

We conducted a series of robustness checks to assess the sensitivity of our results (see Section

A.6 in the Appendix). First, accounting for the skewed nature of the tree cover data (see Fig.

A4 in the Appendix), we used a natural logarithm of the tree cover as our outcome variable.

This meant discarding 0.02% of observations with a zero tree cover value. Therefore, we

reran our regression applying an inverse hyperbolic sine transformation (Burbidge et al.,

1988) as well as using a raw tree cover variable instead of the logged variable. Our findings

are robust to these alternative ways of defining our outcome variable, see Table A8 in the
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Appendix.

Second, in our main analyses, we used three-year averages of tree cover. To explore the

sensitivity to the time period aggregation, we re-estimated our model using annual tree cover

data. We also checked whether our results held if we collapsed the data only to two time

periods: pre-PSNP (2000–2004) and PSNP (2005–2019) (see Table A9 in the Appendix).

Our results were robust to these alternative ways of constructing our data set.

Third, we used alternative ways to control for time trends. Instead of region-specific

period fixed effects, we showed that our results are robust to using less data-intensive ap-

proaches, such as simple linear time trend (=1 if first period; =2 if second period; and so

on) and un-interacted period fixed effects (see Table A10 in the Appendix).

Fourth, our impact estimates were not influenced by additional district level characteris-

tics (Table A11) or time-invariant district characteristics (Table A12).

Fifth, to explore the possibility that our findings were driven by a particular district

(e.g., due to its size or because of unusually large changes in tree cover after the launch

of the PSNP), we reran our regressions by omitting each district at a time from the data

set. The estimates remained stable when individual districts were omitted from the data

set, indicating that the findings were not driven by a particular district (Fig. A13 in the

Appendix).

Sixth, our confidence intervals were calculated using clustered standard errors, which

may not be appropriate if the error terms are spatially auto-correlated. Fully adjusting for

spatial autocorrelation is not computationally feasible in our setup due to the large size of

the data set (see Table A13 in the Appendix). However, using random subsets of our data

suggests that our results are robust to adjusting our standard errors and confidence intervals

to control for spatial autocorrelation (Conley, 1999) (see Table A14 in the Appendix).

Finally, we used MODIS VCF’s data quality band as described in the Data sub-section to

assess the robustness of our results to the quality of the input surface reflectance data used

to estimate tree cover. To this end, we identified the number of data quality flags of each
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pixel per year and re-ran the analysis after discarding all the pixels that were flagged twice

or more in a year during our study period. Our findings were not driven by data quality

issues (see Table A15 in the Appendix).

6 Discussion

The United Nations SDGs (United Nations, 2015) underscore the urgent need to address

multiple dimensions of climatic, social, and ecological challenges in an integrated manner

(Gil et al., 2019; Norton et al., 2020; Seddon et al., 2020; Downing et al., 2021).

Food security, poverty, and forests are closely linked and are affected by and contributors

to climate change (FAO, 2008; IPCC, 2019). While higher food production is necessary to

feed an increasingly populated world, the agricultural sector remains an important source

of GHG emissions, deforestation, and negative environmental impacts (Godfray et al., 2011;

Knoke et al., 2013; Agrawal et al., 2014; Gil et al., 2019; IPCC, 2019; Bahar et al., 2020).

Forests support climate change mitigation through carbon sequestration and may also con-

tribute to food security through the provisioning of ecosystem services and increased yields in

agroforestry systems (Bahar et al., 2020; Amadu et al., 2020). Deforestation and land degra-

dation contribute to climate change through GHG emissions and reduced rates of carbon

uptake (IPCC, 2019), while poverty exacerbates food insecurity and increases vulnerability

to climate change by reducing coping and adaptive capacity (FAO, 2008; Paul et al., 2016).

While Ethiopia has made considerable commitment to reduce its vulnerability to climate

change, its climate change adaptive capacity is still limited and there is a need to strengthen

it across sectors, interventions, and actors (Federal Democratic Republic of Ethiopia, 2019,

2021). The PSNP is designed as a safety net program for households that are chronically food

insecure and poor while supporting community development and environmental restoration

practices through its public works program (MoA, 2010; Wiseman et al., 2010). As such,

it is an example of a program that integrates climate change actions into development pro-
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gramming.

Our results show that the PSNP increased tree cover by 3.8% on average over 15 years

in the districts of the Ethiopian highlands that participated in the program. The tree cover

increases are larger in less densely populated areas, sloped terrain, and areas classified as

forests and croplands. While the program design targets rehabilitation efforts in steep-sloped

communal terrain (MoA, 2010; Wiseman et al., 2010), these spatially heterogeneous impacts

may also highlight the now well-established tension between environmental conservation and

economic pressures (Angelsen, 2010; Börner et al., 2020): distance to markets and terrain

slope drive agricultural income and costs, making it less profitable to convert forests to

cropland in steep-sloped terrains and in areas farther away from urban centers (Sandel and

Svenning, 2013; von Thünen, 1826). We estimate that the annual negative CO2 emissions

from the increased tree cover are equivalent to 1.5% of Ethiopia’s annual reduction pledged by

2030 in its Nationally Determined Contribution for the Paris Agreement (Federal Democratic

Republic of Ethiopia, 2021). Our estimate is larger, but on the same magnitude as Woolf

et al. (2018) on the PSNP negative carbon emissions using different methods.1

Our study focuses on a large-scale safety net program with a public works component

that is increasingly viewed as an important part of Ethiopia’s response to climate change

(Wiseman et al., 2010; Federal Democratic Republic of Ethiopia, 2020). Related work in

this area has focused on conditional cash transfer programs without explicit environmental

goals and documented ambiguous environmental impacts (Alix-Garcia et al., 2013; Ferraro

and Simorangkir, 2020; Dyngeland et al., 2020).

Our findings are complementary to the growing literature on the benefits of payment for

ecosystem services (PES) programs to reduce deforestation (Alix-Garcia et al., 2012, 2015;

Jayachandran et al., 2017; Alix-Garcia et al., 2018; Salzman et al., 2018; Jack and Jayachan-

dran, 2019). While PES programs are typically designed with environmental benefits as the
1Note that we benchmark our estimate against Ethiopia’s most recent 2021 reduction pledge (Federal

Democratic Republic of Ethiopia, 2021), whereas Woolf et al. (2018) benchmark against Ethiopia’s earlier
2016 reduction pledge UNFCCC (2016), so the percentages of the reductions met are not directly comparable.
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primary goal, growing research has demonstrated that these programs can have important

social benefits including poverty reduction (Alix-Garcia et al., 2015) and increasing social

capital (Alix-Garcia et al., 2018). Our work complements the PES literature in that we

find a program with primarily social goals (food security and poverty reduction) can have

important environmental benefits. Combined with the PES literature, our findings further

cement the importance of considering both social and environmental benefits when evaluat-

ing programs. At the same time, the relatively modest gains that we find in tree cover from

the poverty-focused PSNP are congruent with the relatively modest reductions in poverty

that have been found from PES programs (Alix-Garcia et al., 2015).

The social protection literature has raised concerns about the high implementation costs

of public works programs, especially when benchmarked against alternative social safety net

programs, such as universal basic income schemes (Ravallion, 2019). However, typically

public works programs have not accounted directly for the benefits generated by the public

goods produced by these programs (Gehrke and Hartwig, 2018; Beierl and Grimm, 2019;

Ravallion, 2019; Subbarao et al., 2012). Our estimates suggest that for Ethiopia’s PSNP,

the positive impact of tree cover alone (through carbon storage) could offset as much as

49% of the administrative costs of the program on the long term. Our findings show that

public works programs can have sizable environmental benefits and should be embedded in

benefit-cost calculations to avoid under investing in beneficial programs.

6.1 Considerations in realizing environmental benefits in social pro-

tection programs

Potential pathways to increase the environmental and climatic benefits of social protection

programs include adding or strengthening existing environmental components and incentives

to increase tree cover and to perform sustainable land management practices. In addition,

there is an opportunity for these types of programs to build on synergies with tree plant-

ing, forest conservation, and sustainable forest management initiatives at national (e.g., the
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African Forest Landscape Restoration Initiative, the Green Legacy Initiative, and the Cli-

mate Resilient Green Economy strategy) and sub-national level, such as participatory forest

management (Ameha et al., 2014; Siraj et al., 2018), Clean Development Mechanism projects

(Brown et al., 2011), and other re-greening initiatives (Lemenih and Kassa, 2014). However,

realizing the environmental and climatic benefits of social protection programs that have

an environmental component is not without challenges, as it requires the full integration of

the programs within their socio-ecological context. Specifically, the success of tree planting

projects rest on careful planning, evaluation of potential trade-offs, and consideration of sev-

eral social and environmental factors before their implementation (Chazdon and Brancalion,

2019; Holl and Brancalion, 2020).2 Biophysical aspects such as selecting adequate species

and location have received most of the attention (Boissière et al., 2021) partly due to their

effect on carbon stock as well as the effect of trees in the environment and overall climatic

impact (Kirby and Potvin, 2007; Schulp et al., 2008; Anderson et al., 2011). In addition, the

importance of including many native species to increase biodiversity and ecosystem services

provisioning, has also been emphasized (IPCC, 2019; Ellison et al., 2017; Seddon et al., 2020;

César et al., 2021). It is also critical to consider the complexity of socio-economic aspects

of tree planting, including a long-term commitment to land protection, management, and

funding (Holl and Brancalion, 2020), as well as the needs, goals, and participation of local

communities (Boissière et al., 2021), and land tenure issues (Unruh, 2008; Agrawal et al.,

2014; Legesse et al., 2018; Boissière et al., 2021).

The design of the PSNP Public Works component paid careful attention to many of these

issues. First, the public works projects are integrated into community planning to increase

their relevance and improve long-term sustainability (MoA, 2010; Wiseman et al., 2010).

Combined with technical support from environmental experts (Wiseman et al., 2010), this

community-led approach aimed to ensure that public works projects were tailored to the
2See Lemenih and Kassa (2014) for a review of the factors influencing re-greening initiatives in Ethiopia

and Boissière et al. (2021) for an examination of the socio-economic factors influencing reforestation projects
throughout Ethiopia.
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socio-ecological context. Second, the PSNP public works take place during an agricultural

slack season to minimize potential crowding-out effects of on-farm labor and output (Holden

et al., 2006). Third, while the PSNP remains largely externally funded (World Bank, 2018),

the program is led and implemented by the government of Ethiopia, ensuring long-term

commitment to implementation and results.

Lastly, we note that the primary focus of the PSNP is on improving food security, with

a secondary focus on generating community assets. Many of the community assets aim to

enhance climate change adaptation and resilience. Climate change mitigation, in contrast,

is not a core focus of the program and, as a result, the program strategies are not designed

to optimize for climate change mitigation benefits. Given that Ethiopia is a resource-poor

country with limited implementation capacity, the burden of mitigation should not fall on

Ethiopia. However, if external funding to the PSNP were increased, that might allow for a

greater focus on climate change mitigation (Jirka et al., 2015).

6.2 Limitations

Many social protection programs in low and middle income countries use geographic tar-

geting (Beegle et al., 2018b; Coady et al., 2004) making it difficult to causally assess their

environmental impacts. We addressed this by constructing a credible counterfactual, how-

ever, in the absence of a randomized allocation of the program, we cannot be sure that our

estimates are entirely free from bias (Alpízar and Ferraro, 2020). In addition, our estimates

represent local average treatment effects (Imbens and Angrist, 1994). However, the area of

common support pixels used in the final analysis was quite large, covering 345,000 km2 (or

34.5 million ha) and spanning multiple agro-ecological zones. Focusing on such a large land

area eases the concerns of applying local average treatment effects to make broader policy

relevant statements. To further alleviate these concerns, we also uncover several important

sources of impact heterogeneity, such as population density, terrain slope, forest and cropland

land cover.
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While our data did not allow us to explore the mechanisms through which the PSNP

increased tree cover, we hypothesize that the tree cover increases are due to the nature of

the public works projects which were designed to rehabilitate degraded lands. However, it is

also possible that the public works projects ‘crowd-in’ investments by inducing households

to plant trees on their private lands (Holden et al., 2006; Andersson et al., 2011). If so,

this means that the effect of the PSNP on tree cover goes beyond the PSNP’s public works

area. In our study, we did find that the PSNP resulted in small increases of tree cover in

areas categorized as cropland at the onset of the program in 2005, while the largest effects

were observed in areas classified as forests and woody areas. Additionally, it is also possible

that the cash or in-kind transfers themselves could have limited the pressure on households

to cut and sell trees for their immediate cash needs during economic hardship, preventing

deforestation.

7 Conclusion

We have measured the impact on tree cover of the PSNP using satellite-based data of tree

cover combined with difference-in-differences and inverse probability treatment weighting

methodologies. To the best of our knowledge, this is the first assessment of the environ-

mental impacts of a major public works program using a broad geographic data coverage

and counter-factual analysis. It is an example of a design-based causal inference strategy to

empirically evaluate a large sustainability intervention (see Barrett (2021) for a recent call

to expand this type of analysis in the broader sustainability science community). Our work

also buttresses Norton et al. (2020)’s review on the potential of employment-based social

assistance programs to promote ecosystem stewardship, in that we quantify the carbon se-

questration benefits of the PSNP showing that large social assistance programs can attain

both social and environmental aims.

Our results show that the PSNP increases tree cover and supports climate change miti-
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gation efforts through carbon sequestration, with larger increases in less densely populated

areas and on steep-sloped terrain. The PSNP is one of the largest social protection pro-

grams in Africa, and our results show the potential that these types of programs can have to

support mitigation strategies for climate change by increasing tree cover and reducing CO2

emissions.

26



References
Abadie, A. (2005). Semiparametric difference-in-differences estimators. The Review of Eco-

nomic Studies, 72(1):1–19.

Abadie, A., Athey, S., Imbens, G. W., and Wooldridge, J. (2017). When should you
adjust standard errors for clustering? NBER working paper. Retrieved from https:
//www.nber.org/papers/w24003.

Adimassu, Z. and Kessler, A. (2015). Impact of the productive safety net program on farm-
ers’ investments in sustainable land management in the Central Rift Valley of Ethiopia.
Environmental Development, 16:54–62.

African Union Development Agency (2021). African Forest Landscape Restoration Initiative.
Retrieved from https://afr100.org/.

Agrawal, A., Wollenberg, E., and Persha, L. (2014). Governing agriculture-forest landscapes
to achieve climate change mitigation. Global Environmental Change, 29:270–280.

Alderman, H., Gentilini, U., and Yemtsov, R. (2017). The 1.5 Billion People Question: Food,
Vouchers, or Cash Transfers? World Bank Publications, Washington D.C.

Alemu, T. and Mengistu, A. (2019). Impacts of climate change on food security in Ethiopia:
Adaptation and mitigation options: A review. Climate Change-Resilient Agriculture and
Agroforestry, pages 397–412.

Alix-Garcia, J., McIntosh, C., Sims, K. R., and Welch, J. R. (2013). The ecological foot-
print of poverty alleviation: Evidence from Mexico’s Oportunidades program. Review of
Economics and Statistics, 95(2):417–435.

Alix-Garcia, J. M., Shapiro, E. N., and Sims, K. R. (2012). Forest conservation and slip-
page: Evidence from Mexico’s national payments for ecosystem services program. Land
Economics, 88(4):613–638.

Alix-Garcia, J. M., Sims, K. R., Orozco-Olvera, V. H., Costica, L. E., Medina, J. D. F.,
and Monroy, S. R. (2018). Payments for environmental services supported social capital
while increasing land management. Proceedings of the National Academy of Sciences,
115(27):7016–7021.

Alix-Garcia, J. M., Sims, K. R. E., and Yañez-Pagans, P. (2015). Only one tree from
each seed? Environmental effectiveness and poverty alleviation in Mexico’s payments for
ecosystem services program. American Economic Journal: Economic Policy, 7(4):1–40.

Alpízar, F. and Ferraro, P. J. (2020). The environmental effects of poverty programs and
the poverty effects of environmental programs: The missing RCTs. World Development,
127:104783.

Amadu, F. O., Miller, D. C., and McNamara, P. E. (2020). Agroforestry as a pathway
to agricultural yield impacts in climate-smart agriculture investments: Evidence from
southern Malawi. Ecological Economics, 167:106443.

27

https://www.nber.org/papers/w24003
https://www.nber.org/papers/w24003
https://afr100.org/


Ameha, A., Larsen, H., and Lemenih, M. (2014). Participatory forest management in
Ethiopia: Learning from pilot projects. Environmental Management, 53(4):838–854.

Anaya, J. A., Chuvieco, E., and Palacios-Orueta, A. (2009). Aboveground biomass as-
sessment in Colombia: A remote sensing approach. Forest Ecology and Management,
257(4):1237–1246.

Anderson, R. G., Canadell, J. G., Randerson, J. T., Jackson, R. B., Hungate, B. A., Bal-
docchi, D. D., Ban-Weiss, G. A., Bonan, G. B., Caldeira, K., Cao, L., et al. (2011).
Biophysical considerations in forestry for climate protection. Frontiers in Ecology and the
Environment, 9(3):174–182.

Andersson, C., Mekonnen, A., and Stage, J. (2011). Impacts of the Productive Safety
Net Program in Ethiopia on livestock and tree holdings of rural households. Journal of
Development Economics, 94(1):119–126.

Angelsen, A. (2010). Policies for reduced deforestation and their impact on agricultural
production. Proceedings of the National Academy of Sciences, 107(46):19639–19644.

Angrist, J. D. and Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist’s
companion. Princeton University Press, Princeton.

Bahar, N. H., Lo, M., Sanjaya, M., Van Vianen, J., Alexander, P., Ickowitz, A., and Sunder-
land, T. (2020). Meeting the food security challenge for nine billion people in 2050: What
impact on forests. Global Environmental Change, 62:102056.

Barrett, C. B. (2021). On design-based empirical research and its interpretation and
ethics in sustainability science. Proceedings of the National Academy of Sciences,
118(20):e2023343118.

Beegle, K., Christiaensen, L., Dabalen, A., and Gaddis, I. (2018a). Poverty in a Rising
Africa. World Bank, Washington, D.C.

Beegle, K., Coudouel, A., and Monsalve, E. (2018b). Realizing the Full Potential of Social
Safety Nets in Africa. The World Bank.

Beierl, S. and Grimm, M. (2019). Do public works programmes work? A systematic review
of the evidence in Africa and the MENA region. Working paper, GIZ and University of
Passau. Retrieved from https://socialprotection.org/discover/publications/do-
public-works-programmes-work-systematic-review-evidence-programmes-low-
and.

Berhane, G., Gilligan, D. O., Hoddinott, J., Kumar, N., and Taffesse, A. S. (2014). Can social
protection work in Africa? The impact of Ethiopia’s Productive Safety Net Programme.
Economic Development and Cultural Change, 63(1):1–26.

Boissière, M., Atmadja, S., Guariguata, M. R., Kassa, H., and Sist, P. (2021). Perspectives
on the socio-economic challenges and opportunities for tree planting: A case study of
Ethiopia. Forest Ecology and Management, 497:119488.

28

https://socialprotection.org/discover/publications/do-public-works-programmes-work-systematic-review-evidence-programmes-low-and
https://socialprotection.org/discover/publications/do-public-works-programmes-work-systematic-review-evidence-programmes-low-and
https://socialprotection.org/discover/publications/do-public-works-programmes-work-systematic-review-evidence-programmes-low-and


Bradshaw, C. J. and Di Minin, E. (2019). Socio-economic predictors of environmental per-
formance among African nations. Scientific Reports, 9(1):1–13.

Brown, D. R., Dettmann, P., Rinaudo, T., Tefera, H., and Tofu, A. (2011). Poverty allevia-
tion and environmental restoration using the clean development mechanism: a case study
from Humbo, Ethiopia. Environmental Management, 48(2):322–333.

Burbidge, J. B., Magee, L., and Robb, A. L. (1988). Alternative transformations to handle
extreme values of the dependent variable. Journal of the American Statistical Association,
83(401):123–127.

Börner, J., Schulz, D., Wunder, S., and Pfaff, A. (2020). The effectiveness of forest conser-
vation policies and programs. Annual Review of Resource Economics, 12:45–64.

Caliendo, M. and Kopeinig, S. (2008). Some practical guidance for the implementation of
propensity score matching. Journal of Economic Surveys, 22(1):31–72.

César, R. G., Belei, L., Badari, C. G., Viani, R. A., Gutierrez, V., Chazdon, R., Brancalion,
P. H., and Morsello, C. (2021). Forest and landscape restoration: A review emphasizing
principles, concepts, and practices. Land, 10(1):28.

Chabé-Ferret, S. (2017). Should we combine difference in differences with conditioning on pre-
treatment outcomes? Working paper. Retrieved from https://www.tse-fr.eu/sites/
default/files/TSE/documents/doc/wp/2017/wp_tse_824.pdf.

Chazdon, R. and Brancalion, P. (2019). Restoring forests as a means to many ends. Science,
365(6448):24–25.

CIESIN: Center for International Earth Science Information Network, Columbia Univer-
sity (2016). Gridded population of the world, version 4 (GPWv4): Administrative unit
center points with population estimates. Palisades, NY: NASA Socioeconomic Data and
Applications Center (SEDAC). http://dx.doi.org/10.7927/H4F47M2C.

Clark Labs (2019). TerrSet Geospatial Monitoring and Modeling Software, version 19.0.2.
Clark University. Worcester, MA.

Clay, D. C., Molla, D., and Habtewold, D. (1999). Food aid targeting in Ethiopia: A study
of who needs it and who gets it. Food Policy, 24(4):391–409.

Climate and Land Use Alliance (2021). New York Declaration on Forests. Retrieved from
https://forestdeclaration.org/.

Coady, D., Grosh, M., and Hoddinott, J. (2004). Targeting outcomes redux. The World
Bank Research Observer, 19(1):61–85.

Colella, F., Lalive, R., Sakalli, S. O., and Thoenig, M. (2019). Inference with arbitrary
clustering. Retrieved from: https://www.iza.org/publications/dp/12584/inference-
with-arbitrary-clustering.

29

https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2017/wp_tse_824.pdf
https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2017/wp_tse_824.pdf
http://dx.doi.org/10.7927/H4F47M2C
https://forestdeclaration.org/
https://www.iza.org/publications/dp/12584/inference-with-arbitrary-clustering
https://www.iza.org/publications/dp/12584/inference-with-arbitrary-clustering


Coll-Black, S., Gilligan, D. O., Hoddinott, J., Kumar, N., Taffesse, A. S., Wiseman, W.,
et al. (2011). Targeting Food Security Interventions When “Everyone is Poor”: The Case
of Ethiopia’s Productive Safety Net Programme. ESSP II Working, 24.

Conley, T. G. (1999). GMM estimation with cross sectional dependence. Journal of Econo-
metrics, 92(1):1–45.

Conway, D. and Schipper, E. L. F. (2011). Adaptation to climate change in Africa: Challenges
and opportunities identified from Ethiopia. Global Environmental Change, 21(1):227–237.

Crump, R. K., Hotz, V. J., Imbens, G. W., and Mitnik, O. A. (2009). Dealing with limited
overlap in estimation of average treatment effects. Biometrika, 96(1):187–199.

Cuaresma, J., Danylo, O., Fritz, S., McCallum, I., Obersteiner, M., See, L., and Walsh, B.
(2017). Economic development and forest cover: Evidence from satellite data. Scientific
Reports, 7(1):1–8.

De Waal, A. (2017). Mass starvation: The history and future of famine. John Wiley & Sons.

DiMiceli, C., Carroll, M., Sohlberg, R., Huang, C., Hansen, M. C., and Townshend, J.
(2015). MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m
SIN Grid V006 Data set. NASA EOSDIS Land Processes DAAC. Accessed 2021-01-03
from https://doi.org/10.5067/MODIS/MOD44B.006.

DiMiceli, C., Townshend, J., Carroll, M., and Sohlberg, R. (2021). Evolution of the repre-
sentation of global vegetation by vegetation continuous fields. Remote Sensing of Envi-
ronment, 254:112271.

Downing, A. S., Wong, G. Y., Dyer, M., Aguiar, A. P., Selomane, O., and Aceituno, A. J.
(2021). When the whole is less than the sum of all parts–Tracking global-level impacts of
national sustainability initiatives. Global Environmental Change, 69:102306.

Drechsler, M., Coll-Black, S., Tatin-Jaleran, C., and Clarke, D. (2017). Quantifying
costs of drought risk in Ethiopia: A technical note. Report. Retrieved from http:
//hdl.handle.net/10986/34192, World Bank.

Dyngeland, C., Oldekop, J. A., and Evans, K. L. (2020). Assessing multidimensional sus-
tainability: Lessons from Brazil’s social protection programs. Proceedings of the National
Academy of Sciences, 117(34):20511–20519.

Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V.,
Van Noordwijk, M., Creed, I. F., Pokorny, J., et al. (2017). Trees, forests and water: Cool
insights for a hot world. Global Environmental Change, 43:51–61.

ESRI (2019). ArcGIS Desktop, Release 10.7. Redlands, CA: Environmental Systems Re-
search Institute.

30

https://doi.org/10.5067/MODIS/MOD44B.006
http://hdl.handle.net/10986/34192
http://hdl.handle.net/10986/34192


EU, ILO, FAO, OECD, UN-Habitat, and World Bank (2020). A recommendation on the
method to delineate cities, urban and rural areas for international statistical compar-
isons. Report. Retrieved from https://unstats.un.org/unsd/statcom/51st-session/
documents/BG-Item3j-Recommendation-E.pdf.

FAO (2008). Climate change and food security: A framework document. FAO Rome.

FAO, IFAD, and UNICEF (2020). The State of Food Security and Nutrition in the World
2020. Report. Retrived from http://www.fao.org/publications/sofi/2020/en/.

Federal Democratic Republic of Ethiopia (2019). Ethiopia’s Climate Resilient Green Econ-
omy. National Adaptation Plan (NAP-ETH). Retrieved from https://www4.unfccc.int/
sites/NAPC/Documents/Parties/NAP-ETH%20FINAL%20VERSION%20%20Mar%202019.pdf.

Federal Democratic Republic of Ethiopia (2020). Ethiopia’s Climate Resilient Green
Economy: National Adaptation Plan (NAP) Implementation Roadmap. Retrieved
from https://napglobalnetwork.org/wp-content/uploads/2020/08/napgn-en-2020-
Ethiopia-climate-resilient-green-economy-nap-roadmap.pdf.

Federal Democratic Republic of Ethiopia (2021). Updated nationally determined con-
tribution (NDC) of the Federal Democratic Republic of Ethiopia. Report. Retrieved
from https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Ethiopia%
20First/Ethiopia%27s%20updated%20NDC%20JULY%202021%20Submission_.pdf.

Ferraro, P. J. and Simorangkir, R. (2020). Conditional cash transfers to alleviate poverty
also reduced deforestation in Indonesia. Science Advances, 6(24):eaaz1298.

Forrest, M., Tost, H., Lelieveld, J., and Hickler, T. (2020). Including vegetation dynamics in
an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4. 0)
with the EMAC modelling system (v2. 53). Geoscientific Model Development, 13(3):1285–
1309.

Friedl, M. and Sulla-Menashe, D. (2015). NASA EOSDIS Land Processes DAAC 10.
MCD12Q1 MODIS/Terra+ aqua land cover type yearly L3 global 500m SIN grid V006
data set. Retrieved from https://modis.gsfc.nasa.gov/data/dataprod/mod12.php.

Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., and
Hoell, A. (2008). Warming of the Indian Ocean threatens eastern and southern African
food security but could be mitigated by agricultural development. Proceedings of the
national academy of sciences, 105(32):11081–11086.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G.,
Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J. (2015). The climate hazards
infrared precipitation with stations—A new environmental record for monitoring extremes.
Scientific Data, 2(1):150066.

Gao, Y., Ghilardi, A., Mas, J., Quevedo, A., Paneque-Gálvez, J., and Skutsch, M. (2018).
Assessing forest cover change in Mexico from annual MODIS VCF data (2000–2010).
International Journal of Remote Sensing, 39(22):7901–7918.

31

https://unstats.un.org/unsd/statcom/51st-session/documents/BG-Item3j-Recommendation-E.pdf
https://unstats.un.org/unsd/statcom/51st-session/documents/BG-Item3j-Recommendation-E.pdf
http://www.fao.org/publications/sofi/2020/en/
https://www4.unfccc.int/sites/NAPC/Documents/Parties/NAP-ETH%20FINAL%20VERSION%20%20Mar%202019.pdf
https://www4.unfccc.int/sites/NAPC/Documents/Parties/NAP-ETH%20FINAL%20VERSION%20%20Mar%202019.pdf
https://napglobalnetwork.org/wp-content/uploads/2020/08/napgn-en-2020-Ethiopia-climate-resilient-green-economy-nap-roadmap.pdf
https://napglobalnetwork.org/wp-content/uploads/2020/08/napgn-en-2020-Ethiopia-climate-resilient-green-economy-nap-roadmap.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Ethiopia%20First/Ethiopia's%20updated%20NDC%20JULY%202021%20Submission_.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Ethiopia%20First/Ethiopia's%20updated%20NDC%20JULY%202021%20Submission_.pdf
https://modis.gsfc.nasa.gov/data/dataprod/mod12.php


Gehrke, E. and Hartwig, R. (2018). Productive effects of public works programs: What do
we know? What should we know? World Development, 107:111–124.

Gil, J. D., Daioglou, V., van Ittersum, M., Reidsma, P., Doelman, J. C., van Middelaar,
C. E., and van Vuuren, D. P. (2019). Reconciling global sustainability targets and local
action for food production and climate change mitigation. Global Environmental Change,
59:101983.

Godfray, H., Pretty, J., Thomas, S., Warham, E., and Beddington, J. (2011). Linking policy
on climate and food. Science, 331(6020):1013–1014.

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A.,
Schlesinger, W. H., Shoch, D., Siikamäki, J. V., and Smith, P. (2017). Natural climate
solutions. Proceedings of the National Academy of Sciences, 114(44):11645–11650.

Hansen, M. C., DeFries, R., Townshend, J., Carroll, M., Dimiceli, C., and Sohlberg, R.
(2003). Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First results of
the MODIS Vegetation Continuous Fields Algorithm. Earth Interactions, 7(10):1–15.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A.,
Thau, D., Stehman, S., Goetz, S. J., Loveland, T. R., et al. (2013). High-resolution global
maps of 21st-century forest cover change. Science, 342(6160):850–853.

Hansen, M. C., Roy, D., Lindquist, E., Adusei, B., Justice, C., and Altstatt, A. (2008). A
method for integrating MODIS and Landsat data for systematic monitoring of forest cover
and change in the Congo Basin. Remote Sensing of Environment, 112(5):2495–2513.

Herrera, D., Pfaff, A., and Robalino, J. (2019). Impacts of protected areas vary with the level
of government: Comparing avoided deforestation across agencies in the Brazilian Amazon.
Proceedings of the National Academy of Sciences, 116(30):14916–14925.

Hickey, S., Lavers, T., Niño-Zarazúa, M., and Seekings, J. (2018). The negotiated politics of
social protection in sub-Saharan Africa. WIDER Working Paper. Retrieved from http:
//dx.doi.org/10.35188/UNU-WIDER/2018/476-6.

Hidrobo, M., Hoddinott, J., Kumar, N., and Olivier, M. (2018). Social protection, food
security, and asset formation. World Development, 101:88–103.

Hoddinott, J., Berhane, G., Gilligan, D. O., Kumar, N., and Seyoum Taffesse, A. (2012).
The impact of Ethiopia’s Productive Safety Net Programme and related transfers on agri-
cultural productivity. Journal of African Economies, 21(5):761–786.

Holden, S., Barrett, C. B., and Hagos, F. (2006). Food-for-work for poverty reduction and
the promotion of sustainable land use: Can it work? Environment and Development
Economics, 11:15–38.

Holl, K. D. and Brancalion, P. H. (2020). Tree planting is not a simple solution. Science,
368(6491):580–581.

32

http://dx.doi.org/10.35188/UNU-WIDER/2018/476-6
http://dx.doi.org/10.35188/UNU-WIDER/2018/476-6


Imbens, G. W. (2015). Matching methods in practice: Three examples. Journal of Human
Resources, 50(2):373–419.

Imbens, G. W. and Angrist, J. D. (1994). Identification and estimation of local average
treatment effects. Econometrica, pages 467–475.

Interagency Working Group on Social Cost of Greenhouse Gases (2016). Technical up-
date of the social cost of carbon for regulatory impact analysis under Executive Order
12866. Report. Retrieved from https://www.epa.gov/sites/production/files/2016-
12/documents/sc_co2_tsd_august_2016.pdf, United States Government.

International Union for Conservation of Nature (2021). The Bonn Challenge. Retrieved from
https://www.bonnchallenge.org/.

IPCC (2019). Summary for Policymakers. In: Climate Change and Land: an IPCC special
report on climate change, desertification, land degradation, sustainable land management,
food security, and greenhouse gas fluxes in terrestrial ecosystems. Retrieved from http:
//www.ipcc.ch/srccl/.

Jack, B. K. and Jayachandran, S. (2019). Self-selection into payments for ecosystem services
programs. Proceedings of the National Academy of Sciences, 116(12):5326–5333.

Jain, M. (2020). The benefits and pitfalls of using satellite data for causal inference. Review
of Environmental Economics and Policy, 14(1):157–169.

Jayachandran, S., de Laat, J., Lambin, E. F., Stanton, C. Y., Audy, R., and Thomas, N. E.
(2017). Cash for carbon: A randomized trial of payments for ecosystem services to reduce
deforestation. Science, 357(6348):267–273.

Jayne, T. S., Strauss, J., Yamano, T., and Molla, D. (2002). Targeting of food aid in rural
Ethiopia: Chronic need or inertia? Journal of Development Economics, 68(2):247–288.

Jirka, S., Woolf, D., Solomon, D., and Lehmann, J. (2015). Climate Finance for Ethiopia’s
Productive Safety Net Programme (PSNP): Comprehensive report on accessing climate
finance and carbon markets to promote socially and environmentally sustainable public
works social safety net programs. A World Bank Climate Smart Initiative (CSI) Report.
Cornell University. World Bank Climate Smart Initiative Report, Cornell University,
Ithaca, NY.

Joffe, M. M., Ten Have, T. R., Feldman, H. I., and Kimmel, S. E. (2004). Model selection,
confounder control, and marginal structural models: Review and new applications. The
American Statistician, 58(4):272–279.

Kirby, K. R. and Potvin, C. (2007). Variation in carbon storage among tree species: Im-
plications for the management of a small-scale carbon sink project. Forest Ecology and
Management, 246(2-3):208–221.

33

https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf
https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf
https://www.bonnchallenge.org/
http://www.ipcc.ch/srccl/
http://www.ipcc.ch/srccl/


Knippenberg, E. and Hoddinott, J. (2017). Shocks, social protection, and resilience: Evi-
dence from Ethiopia. Working paper. Retrieved from https://ideas.repec.org/p/fpr/
esspwp/109.html.

Knoke, T., Calvas, B., Moreno, S. O., Onyekwelu, J. C., and Griess, V. C. (2013). Food
production and climate protection—What abandoned lands can do to preserve natural
forests. Global environmental change, 23(5):1064–1072.

Kuriakose, A. T., Heltberg, R., Wiseman, W., Costella, C., Cipryk, R., and Cornelius, S.
(2013). Climate-responsive social protection. Development Policy Review, 31:o19–o34.

Lawrence, P. and Chase, T. (2017). Representing a new MODIS consistent land surface in
the Community Land Model (CLM 3.0). Journal of Geophysical Research: Biogeosciences,
112(G1):p.e0200881.

Legesse, B. A., Jefferson-Moore, K., and Thomas, T. (2018). Impacts of land tenure and
property rights on reforestation intervention in Ethiopia. Land Use Policy, 70:494–499.

Lemenih, M. and Kassa, H. (2014). Re-greening Ethiopia: history, challenges and lessons.
Forests, 5(8):1896–1909.

Lind, J., Sabates-Wheeler, R., Hoddinott, J., and Taffesse, A. S. (2021). Targeting social
transfers in Ethiopia’s agro-pastoralist and pastoralist societies. Development and Change.

Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P., Pirani, A.,
Moufouma-Okia, W., Péan, C., and Pidcock, R. (2018). Global Warming of 1.5 OC: An
IPCC Special Report on the Impacts of Global Warming of 1.5° C Above Pre-industrial
Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strength-
ening the Global Response to the Threat of Climate Change, Sustainable Development, and
Efforts to Eradicate Poverty. World Meteorological Organization Geneva, Switzerland.

McCord, A. and Paul, M. H. (2019). An Introduction to MGNREGA Innovations and their
Potential for India-Africa Linkages on Public Employment Programming. Gesellschaft für
Internationale Zusammenarbeit (GIZ).

McKenzie, D., Gibson, J., and Stillman, S. (2010). How important is selection? Experi-
mental vs. non-experimental measures of the income gains from migration. Journal of the
European Economic Association, 8(4):913–945.

Miles, L., Newton, A., DeFries, R., Ravilious, C., May, I., Blyth, S., Kapos, V., and Gordon,
J. (2006). A global overview of the conservation status of tropical dry forests. Journal of
Biogeography, 33(3):491–505.

MoA (2010). Productive Safety Net Programme (PSNP) programme implementation man-
ual. Report, Ministry of Agriculture (MoA) of Ethiopia.

MoARD (2006). Productive Safety Net Programme (PSNP) programme implementation
manual (revised). Technical report, Addis Ababa: Ministry of Agriculture and Rural
Development (MoARD) of Ethiopia.

34

https://ideas.repec.org/p/fpr/esspwp/109.html
https://ideas.repec.org/p/fpr/esspwp/109.html


Monchuk, V. (2013). Reducing Poverty and Investing in People: The New Role of Safety
Nets in Africa. The World Bank, Washington D.C.

Naidoo, R., Gerkey, D., Hole, D., Pfaff, A., Ellis, A., Golden, C., Herrera, D., Johnson,
K., Mulligan, M., and Ricketts, T. (2019). Evaluating the impacts of protected areas on
human well-being across the developing world. Science Advances, 5(4):eaav3006.

NDRMC (2018). Ethiopia: Humanitarian and disaster resilience plan. Report. Re-
trieved from https://reliefweb.int/sites/reliefweb.int/files/resources/
ethiopia_2018_humanitarian_and_disaster_resilience_plan.pdf, National Disaster
Risk Management Commission (NDRMC).

Norton, A., Seddon, N., Agrawal, A., Shakya, C., Kaur, N., and Porras, I. (2020). Harnessing
employment-based social assistance programmes to scale up nature-based climate action.
Philosophical Transactions of the Royal Society B, 375(1794):20190127.

Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., Delusca, K., Flores-Renteria, D., Hermans,
K., Jobbagy, E., Kurz, W., and Li, D. (2019). Land Degradation: IPCC Special Report
on Climate Change, Desertification, Land 5 Degradation, Sustainable Land Management,
Food Security, and 6 Greenhouse gas fluxes in Terrestrial Ecosystems. Report. Retrieved
from https://www.ipcc.ch/srccl, Intergovernmental Panel on Climate Change (IPCC).

Paul, C. J., Weinthal, E. S., Bellemare, M. F., and Jeuland, M. A. (2016). Social capital,
trust, and adaptation to climate change: Evidence from rural Ethiopia. Global Environ-
mental Change, 36:124–138.

Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L.,
Miwa, K., Ngara, T., Tanabe, K., et al. (2003). Good Practice Guidance for Land Use,
Land-Use Change and Forestry. Institute for Global Environmental Strategies.

Pfaff, A., Robalino, J., Herrera, D., and Sandoval, C. (2015). Protected areas’ impacts
on Brazilian Amazon deforestation: Examining conservation–development interactions to
inform planning. PLOS One, 10(7):e0129460.

Phan, T., Brouwer, R., Hoang, L., and Davidson, M. (2018). Do payments for forest ecosys-
tem services generate double dividends? An integrated impact assessment of Vietnam’s
PES program. PLOS One, 13(8):p.e0200881.

Ravallion, M. (2019). Guaranteed employment or guaranteed income? World Development,
115:209–221.

Rodríguez-Veiga, P., Saatchi, S., Tansey, K., and Balzter, H. (2016). Magnitude, spatial
distribution and uncertainty of forest biomass stocks in Mexico. Remote Sensing of Envi-
ronment, 183:265–281.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in
observational studies for causal effects. Biometrika, 70(1):41–55.

35

https://reliefweb.int/sites/reliefweb.int/files/resources/ethiopia_2018_humanitarian%20_and_disaster_resilience_plan.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/ethiopia_2018_humanitarian%20_and_disaster_resilience_plan.pdf
https://www.ipcc.ch/srccl


Ryan, A. M., Kontopantelis, E., Linden, A., and Burgess Jr, J. F. (2019). Now trending:
Coping with non-parallel trends in difference-in-differences analysis. Statistical Methods
in Medical Research, 28(12):3697–3711.

Ryan, S. J., Palace, M. W., Hartter, J., Diem, J. E., Chapman, C. A., and Southworth, J.
(2017). Population pressure and global markets drive a decade of forest cover change in
Africa’s Albertine Rift. Applied Geography, 81:52–59.

Sabates-Wheeler, R., Lind, J., and Hoddinott, J. (2013). Implementing social protection in
agro-pastoralist and pastoralist areas: How local distribution structures moderate PSNP
outcomes in Ethiopia. World Development, 50:1–12.

Salzman, J., Bennett, G., Carroll, N., Goldstein, A., and Jenkins, M. (2018). The global
status and trends of Payments for Ecosystem Services. Nature Sustainability, 1(3):136–144.

Sandel, B. and Svenning, J.-C. (2013). Human impacts drive a global topographic signature
in tree cover. Nature Communications, 4(1):1–7.

Sant’Anna, P. H. and Zhao, J. (2020). Doubly robust difference-in-differences estimators.
Journal of Econometrics, 219(1):101–122.

Schmidt, E., Dorosh, P. A., Kedir Jemal, M., and Smart, J. (2018). Ethiopia’s spa-
tial and structural transformation: Public policy and drivers of change. Report.
Retrieved from https://www.ifpri.org/publication/synopsis-ethiopias-spatial-
and-structural-transformation-public-policy-and-drivers.

Schmidt, E. and Kedir, M. (2009). Urbanization and spatial connectivity in Ethiopia:
Urban growth analysis using GIS. Report. Retrieved from https://www.ifpri.org/
publication/urbanization-and-spatial-connectivity-ethiopia-0.

Schulp, C. J., Nabuurs, G.-J., Verburg, P. H., and de Waal, R. W. (2008). Effect of tree
species on carbon stocks in forest floor and mineral soil and implications for soil carbon
inventories. Forest ecology and management, 256(3):482–490.

Seddon, N., Chausson, A., Berry, P., Girardin, C. A., Smith, A., and Turner, B. (2020).
Understanding the value and limits of nature-based solutions to climate change and other
global challenges. Philosophical Transactions of the Royal Society B, 375(1794):20190120.

Sexton, J., Song, X., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim, D., Collins, K.,
Channan, S., DiMiceli, C., and Townshend, J. (2013). Global, 30-m resolution continuous
fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with
lidar-based estimates of error. International Journal of Digital Earth, 6(5):427–448.

Shaxson, T. (1999). New concepts and approaches to land management in the tropics with
emphasis on steeplands. Food & Agriculture Org.

Siraj, M., Zhang, K., Xiao, W., Bilal, A., Gemechu, S., Geda, K., Yonas, T., and Xiaodan,
L. (2018). Does participatory forest management save the remnant forest in Ethiopia?
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences,
88(1):1–14.

36

https://www.ifpri.org/publication/synopsis-ethiopias-spatial-and-structural-transformation-public-policy-and-drivers
https://www.ifpri.org/publication/synopsis-ethiopias-spatial-and-structural-transformation-public-policy-and-drivers
https://www.ifpri.org/publication/urbanization-and-spatial-connectivity-ethiopia-0
https://www.ifpri.org/publication/urbanization-and-spatial-connectivity-ethiopia-0


Soares-Filho, B., Moutinho, P., Nepstad, D., Anderson, A., Rodrigues, H., Garcia, R., Di-
etzsch, L., Merry, F., Bowman, M., and Hissa, L. (2010). Role of Brazilian Amazon
protected areas in climate change mitigation. Proceedings of the National Academy of
Sciences, 107(24):10821–10826.

Subbarao, K., Del Ninno, C., Andrews, C., and Rodríguez-Alas, C. (2012). Public Works as
a Safety Net: Design, Evidence, and Implementation. The World Bank.

Sulla-Menashe, D. and Friedl, M. A. (2018). User guide to Collection 6 MODIS land cover
(MCD12Q1 and MCD12C1) product. Report. Retrieved from https://lpdaac.usgs.gov/
documents/101/MCD12_User_Guide_V6.pdf, USGS: Reston, VA, USA.

Tang, X., Woodcock, C., Olofsson, P., and Hutyra, L. (2021). Spatiotemporal assessment
of land use/land cover change and associated carbon emissions and uptake in the Mekong
River Basin. Remote Sensing of Environment, 256:112336.

Townshend, J. R. G., Hansen, M. C., Carroll, M., Dimiceli, C., Sohlberg, R., and Huang,
C. (2017). User Guide for the MODIS Vegetation Continuous Fields product Collection
6, version 1.

UNFCCC (2016). Intended nationally determined contribution (INDC) of the Federal Demo-
cratic Republic of Ethiopia. Report. Retrieved from https://www4.unfccc.int/sites/
ndcstaging/PublishedDocuments/Ethiopia%20First/INDC-Ethiopia-100615.pdf,
United Nations Framework Convention on Climate Change.

United Nations (2015). Transforming our world: The 2030 agenda for sustainable devel-
opment. Retrieved from https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/
70/1&Lang=E.

University of Maryland (2019). User Notes for Global Forest Change 2000–2019, Version
1.7 Update. User manual. Retrieved from http://earthenginepartners.appspot.com/
science-2013-global-forest/download_v1.7.html, Department of Geographical Sci-
ences.

Unruh, J. D. (2008). Carbon sequestration in Africa: The land tenure problem. Global
environmental change, 18(4):700–707.

USGS EROS (1996). Digital elevation - Global 30 arc-second elevation (GTOPO30). Re-
trieved from https://doi.org/10.5066/F7DF6PQS.

Vijay, V., Pimm, S., Jenkins, C., and Smith, S. (2016). The impacts of oil palm on recent
deforestation and biodiversity loss. PLOS One, 11(7):p.e0159668.

von Thünen, J. (1826). The isolated state. Pergamon Press, London, UK.

Wiseman, W., Van Domelen, J., and Coll-Black, S. (2010). Designing and implementing a
rural safety net in a low income setting: Lessons learned from Ethiopia’s Productive Safety
Net Program 2005-2009. Report. Retrieved from http://documents1.worldbank.org/
curated/en/247601469672211732/pdf/701390ESW0P12100Net0in0a0Low0Income.pdf,
World Bank, Washington DC.

37

https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf
https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Ethiopia%20First/INDC-Ethiopia-100615.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Ethiopia%20First/INDC-Ethiopia-100615.pdf
https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html
http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html
https://doi.org/10.5066/F7DF6PQS
http://documents1.worldbank.org/curated/en/247601469672211732/pdf/%20701390ESW0P12100Net0in0a0Low0Income.pdf
http://documents1.worldbank.org/curated/en/247601469672211732/pdf/%20701390ESW0P12100Net0in0a0Low0Income.pdf


Woolf, D., Solomon, D., and Lehmann, J. (2018). Land restoration in food security pro-
grammes: Synergies with climate change mitigation. Climate Policy, 18(10):1260–1270.

World Bank (2018). The State of Social Safety Nets 2018. The World Bank, Washington,
D.C.

World Bank (2020). Ethiopia poverty assessment: Harnessing continued growth for accel-
erated poverty reduction. Report. Retrieved from https://doi.org/10.1596/33544, The
World Bank, Washington, D. C.

World Bank (2021). Ethiopia Country Profile. World Development Indicators Database.
Retrieved from https://data.worldbank.org/country/ethiopia?view=chart, Accessed
September 25, 2021.

Yonzan, N., Lakner, C., and Gerszon Mahler, D. (2020). Projecting global extreme poverty
up to 2030: How close are we to World Bank’s 3% goal? World Bank Data Blog. re-
trieved from https://blogs.worldbank.org/opendata/projecting-global-extreme-
poverty-2030-how-close-are-we-world-banks-3-goal, The World Bank.

Zarin, D. J., Harris, N. L., Baccini, A., Aksenov, D., Hansen, M. C., Azevedo-Ramos, C.,
Azevedo, T., Margono, B. A., Alencar, A. C., Gabris, C., et al. (2016). Can carbon
emissions from tropical deforestation drop by 50% in 5 years? Global Change Biology,
22(4):1336–1347.

Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., Van Noordwijk,
M., and Wang, M. (2016). Global tree cover and biomass carbon on agricultural land:
The contribution of agroforestry to global and national carbon budgets. Scientific Reports,
6(1):1–12.

Zuazo, V. H. D. and Pleguezuelo, C. R. R. (2009). Soil-erosion and runoff prevention by
plant covers: A review. In Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., and
Alberola, C., editors, Sustainable Agriculture, pages 785–811. Springer.

38

https://doi.org/10.1596/33544
https://data.worldbank.org/country/ethiopia?view=chart
https://blogs.worldbank.org/opendata/projecting-global-extreme-poverty-2030-how-close-are-we-world-banks-3-goal
https://blogs.worldbank.org/opendata/projecting-global-extreme-poverty-2030-how-close-are-we-world-banks-3-goal


A Appendix

A.1 Spatial data and methods

Table A1 describes the spatial datasets used in this study.

We used the Vegetation Continuous fields (VCF) annual dataset (MODIS44B) L3, Col-

lection 6 derived from the MODerate Resolution Imaging Spectrometer (MODIS) sensor on

board the Aqua and Terra satellites. This global dataset has a 250m spatial resolution and

provides an estimation of three ground cover components in each pixel: percent tree cover

(VCF-TC), percent non-tree vegetation, and percent non-vegetated (bare) from 0 to 100

(Townshend et al., 2017; DiMiceli et al., 2021). The ground cover components are estimated

through a regression tree algorithm using training data from Landsat Geocover data, 16-day

surface reflectance composites including bands 1–7 and brightness temperature from bands

20, 31, and 32, and the MODIS Global 250m Land/Water map (Townshend et al., 2017).

In addition to these variables, VCF also includes a cloud cover band, a data quality band,

and two standard deviation bands (percent tree cover and percent non-vegetated) bands

(Townshend et al., 2017; DiMiceli et al., 2015).

The Global Forest Change (GFC) dataset (Hansen et al., 2013) is also widely used to

assess forest change (Jain, 2020). We used VCF-TC for two main reasons. First, although

GFC covers our study period at a higher spatial resolution (30m), we did not consider it

appropriate for our analysis due to the inconsistencies resulting from differences in data

processing between the periods 2000 to 2012 and 2013 to 2019 (University of Maryland,

2019). Second, while GFC provides percent tree canopy cover for 2000, the remaining years

are coded as a binary variable (either forest gain or loss). VCF-TC is better aligned to our

research objectives because it allows to asses forest change as a continuous process at the

pixel level (Ryan et al., 2017; DiMiceli et al., 2021).

Our outcome variable of interest is the percent tree cover (VCF-TC), defined as the

“amount of skylight obstructed by tree canopies equal to or greater than 5 m in height”
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(Hansen et al., 2003). We note that this differs from crown cover, “the amount of the

ground which is encompassed by the tree’s crown regardless of whether light penetrates.”

(Townshend et al., 2017).

The data are provided as discrete tiles in sinusoidal projection. We mosaicked the four

tiles covering Ethiopia (h22.v08; h22v07; h21v08 and h21v07) for all years in our study

period. All data except land cover (already in sinusoidal projection) were projected to the

sinusoidal projection. There are six land cover type classifications available in the MODIS

product MCD12Q1. This is also a global yearly product, but at a 500m spatial resolution. We

chose the Geosphere-Biosphere Programme (IGBP) 17 land cover type classification scheme

(Table A2) because it is more closely aligned with our research focus, and aggregated land

cover types as described in Table A3 to explore the heterogeneity of the PSNP impacts on

the main land cover types.

Each VCF-TC pixel was matched to a district and region using the 2007 Ethiopia’s

Central Statistical Agency (CSA) (unpublished data) administrative boundaries. The latter

was joined to the annual PSNP caseloads at district level for our study period. We identified

the district splits that occurred for each year after 2007 and merged back the child districts

to their parent districts along with the PSNP beneficiaries to generate a spatially consistent

dataset.

Finally, we used the VCF data quality band to test the sensitivity of the results to

the uncertainty in vegetation estimates associated with input data quality. This involved

processing the VCF-TC quality flags for each year in our study period and reclassifying them

to extract the pixels that had two or more flags per year during our student period. The

flagged pixels were excluded from the analysis for the robustness check.

A.2 Impact assessment method

The key challenge of any impact assessment is the construction of the counterfactual; what

the outcome would have been had the districts not received the program. In randomized
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controlled trial (RCT) designs, this is solved by randomly allocating the treatment (here

PSNP) across eligible districts. When program allocation is random, districts assigned to

the control arm are identical—in expectation—to districts in the treated group before the

onset of the program, so these control districts provide a credible counterfactual. Impacts of

the program can then be measured as differences in outcomes (or differences in changes in

outcomes over time) between the randomly assigned treatment and control districts. When

an RCT or another experimental design is not feasible or ethical, an identification strategy

must be developed in which the counterfactual is constructed using statistical techniques

to create a control group of districts that are as similar as possible to the treated group.

Most social safety net programs across low and middle income countries are targeted to poor

people or poor areas, not randomly allocated (Coady et al., 2004). This is also the case for

the PSNP: the program was geographically targeted to chronically food-insecure areas of

the country (Wiseman et al., 2010). In the absence of an experimental design, we combined

difference-in-differences (DiD) and statistical matching methods to estimate the impact of

the PSNP on tree cover. This approach is credible because due to funding constraints or

spatial inertia, many poor and chronically food-insecure districts in the highlands are not

part of the PSNP and instead make recurring annual requests for emergency food assistance

(NDRMC, 2018; World Bank, 2020; Clay et al., 1999; Jayne et al., 2002).

A.2.1 Difference in differences method

DiD is a widely used quasi-experimental method to estimate treatment effects when a ran-

domized allocation of a policy or program was not feasible or ethical (Angrist and Pischke,

2009). DiD requires data before and after the intervention began and from a group that

was subject to the treatment (treated group) and a group that was not (control group). A

key identifying assumption of DiD is that the two groups were on a similar trend before the

treatment began (Ryan et al., 2019). To test this ‘parallel trend hypothesis’, data from at

least two periods before the intervention began is needed.
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With data before and after the PSNP began from PNSP and non-PSNP districts, we

can use the DiD approach to estimate the impact of the PSNP program on tree cover. The

VCF-TC data are available from 2000 onwards, permitting us to test the parallel trends

hypothesis.

To begin, we tested the parallel trend hypothesis, restricting our data to two periods

prior to the launch of the PSNP in 2005 (2000–2001 and 2002–2004) and defining the binary

‘treatment’ variable to equal one if the period was 2000–2001, and to equal zero if the period

was 2002–2004. We first estimated the equation provided in the main text using an ordinary

least squares (OLS) method. Column 1 in Table A4 shows that the null hypothesis of

parallel trend (� = 0) was comfortably rejected (p < 0.001). We then attempted to adjust

for non-parallel trends using various fixed effects estimators. Columns 2 and 3 show that

the parallel trends hypothesis was also rejected when both district-level (p < 0.001) and

pixel-level (p < 0.001) fixed effects were used.

A.2.2 Statistical matching method

We used statistical matching estimators that are frequently used in the environmental con-

servation literature to estimate program impacts (Herrera et al., 2019; Naidoo et al., 2019;

Pfaff et al., 2015; Soares-Filho et al., 2010), and which have shown to perform well in reduc-

ing bias when combined with DiD in various contexts (Chabé-Ferret, 2017; McKenzie et al.,

2010; Ryan et al., 2019). More specifically, we used a propensity score matching algorithm

(Rosenbaum and Rubin, 1983) to match the PSNP and non-PSNP pixels based on their

pre-program characteristics: mean and standard deviation of annual rainfall in 1995-2004

(and their squared terms), population density in 2005, elevation and slope of land (Table

A5). We also included binary indicators for each region. Table A6 presents the results of

the propensity score estimation based on a logit estimation method in which the dependent

variable is the binary variable that equals one if the pixel belongs to a PSNP district, and

zero otherwise. As is common in this literature (Imbens, 2015), we were less interested in
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interpreting the magnitude or statistical significance of the coefficients reported in Table A6.

Instead, we used the predictions from this model to construct the propensity score. Fig.

A1 shows the distribution of the propensity score for both PSNP and non-PSNP pixels. As

expected, there were a large number of non-PSNP pixels that received a very low score,

indicating that they are very unlikely to be selected into the program based on their agro-

ecological characteristics. Similarly, there were many PSNP pixels for which the probability

of selection was close to one. Spatially, we see that these ‘poor matches’ are primarily located

in the east and west of the study area (Fig. A2). We defined the area of common support

as pixels with the estimated propensity score within the interval [0.1; 0.9] (Crump et al.,

2009). This meant discarding 5.8 million pixels. In the final data set used in the analysis,

we have 6.5 million pixels and reasonable overlap in the propensity score distributions across

PSNP and non-PSNP pixels (Fig. A3). Spatially, this meant focusing on the areas in the

middle of the study area; those areas just inside and outside of the ‘PSNP boundary’ (Fig.

A2) where the agro-ecological conditions are comparable (see Figure 1 in the main text).

Restricting the area to common support and rerunning the models based on OLS and the

two fixed effects methods resulted in smaller coefficients in absolute terms but the parallel

trend hypothesis is rejected (p < 0.001) across columns 4 to 6 in Table A4.

Finally, we used these pixel level propensity scores (PS) to calculate inverse probability

treatment weights (IPTW) (Abadie, 2005; Joffe et al., 2004): 1/PS for the treated (PSNP)

pixels and 1/(1 � PS) for the untreated (non-PSNP) pixels. After restricting the pixels in

our data set to common support and applying IPTW on our regression model, we cannot

reject the null hypothesis that the tree cover in PSNP and non-PSNP areas were on a similar

trend before the PSNP was launched in 2005 (Column 7 in Table A4); p = 0.473. Table A7

further shows that the pre-program matching covariates are in balance after we restrict the

area to common support and apply IPTW.
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A.3 Additional descriptive statistics

Fig. A4, A5, and A6 display the distribution of average tree cover, population density, and

terrain slope, respectively, after restricting to the area of the common support.

A.4 Heterogeneity analyses

A.4.1 Heterogeneity by population density

In the main text, we provide estimates of the impact of the PSNP on tree cover by terrain

slope (Fig. 2B). We replicate that analysis, but restrict the area to rural areas using two

population density thresholds. Fig. A7 shows the estimates when rural areas are defined as

areas with less than 300 people per km
2 and Fig. A8 shows the estimates when rural areas

are defined as areas with less than 150 people per km2. In line with Fig. 2 presented in the

main text, we see that the slope-specific impacts are larger when we move to less densely

populated areas (especially areas with <150 people/km2).

A.4.2 Heterogeneity by land cover type

Fig. 2C in the main text provides the estimates by land cover type at the onset of the

program in 2005. We replicate that analysis, but restrict the area to rural areas using two

population density thresholds. Fig. A9 shows the estimates when rural areas are defined as

areas with less than 300 people per km
2 and Fig. A10 estimates based on the 150 people

per km2 threshold. As before, we see that the slope-specific impacts are considerably larger

when we move to less densely populated areas (<150 people/km2). This is particularly so for

the forests and woody area category and croplands where we find that the PSNP increased

tree cover by 15.0 percent and 6.9 percent, respectively.
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A.4.3 Heterogeneity by caseload intensity

We also explored whether the impacts were larger in districts that had more PSNP beneficia-

ries relative to total population compared to districts that had fewer. To do this analysis, we

computed the average number of PSNP beneficiaries in each district over the study period

and divided this number with the total population of the district. Using this variable as

our measure of beneficiary caseload intensity, we split the pixels originating from the PSNP

districts into two groups using the median caseload intensity as the threshold. We then

replaced our treatment variables with these two binary variables and reran the regression.

The results of this analysis are shown in Fig. A11. For pixels with a lower caseload in-

tensity, we find positive point estimates of the impact of the program, but these estimates

are relatively small, ranging from 1.6 to 3.0 percent depending on the population threshold

used, and are not statistically significant. On the other hand, for the pixels with a higher

caseload intensity, the estimated increase in tree cover is larger (ranging from 7.1 to 10.9

percent) and statistically significant in all specifications. Wald tests further confirmed that

the differences in impact estimates between low and high intensity areas were statistically

different from zero in all three regressions (p < 0.05). These results are reassuring in that it

is participation in the PSNP, and not some other omitted factor, which is driving our main

results.

A.5 Spillover analysis

To assess spillovers from PSNP districts to neighboring non-PSNP districts, we split our

control area into two groups: non-PSNP districts directly adjacent to PSNP district and

other non-PSNP districts. In total, there were 134 adjacent non-PSNP districts that share a

border with at least one PSNP district. We re-ran our regression using two binary treatment

variables: one capturing PSNP and the other capturing adjacent non-PSNP districts. A

positive and significant impact estimate on the variable capturing adjacent districts would

indicate that neighboring non-PSNP districts also benefit from the program. The estimates
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reported in Fig. A12 quantify the change in tree cover relative to non-PSNP districts that

do not share a border with a PSNP district. The impact estimate for the PSNP districts is

statistically significant in all three columns, while the estimate for the adjacent non-PSNP

districts is not. Therefore, we conclude that there is no statistical evidence in favor of

spillover to non-PSNP districts.

A.6 Robustness checks

We conducted a series of robustness checks to assess the sensitivity of our results.

a. Alternative ways of defining the outcome variable

Our results are not sensitive to the way we define our outcome variables. First, accounting

for the skewed nature of the tree cover data (see Figure A4), we used a natural logarithm

of the tree cover as our outcome variable. This meant discarding 0.02 % of observations

with a zero tree cover value. Therefore, we re-estimated our regression applying an inverse

hyperbolic sine transformation (IHS) as well as using a raw tree cover variable instead of

the logged variable. The results reported in Panel B of Table A8 show that the estimates

are near identical to those reported in the main text (reproduced in Panel A of Table A8)

when we use the IHS transformed outcome variable. However, the estimate for ’all pixels’ is

only significant at the 10-% level. The estimates are statistically significant when we use the

non-transformed (or raw) tree cover variable (Panel C of Table A8), although as before the

’all pixel’ estimate is significant at the 10-% level. The magnitudes are also comparable to

those reported in the main text. We find that PSNP increased tree cover by 0.497 percentage

points. Considering the mean tree cover percent in non-PSNP districts before PSNP was

launched (14.70), this estimate corresponds to a 3.4 percent increase in tree cover.

Second, in our main analyses, we used three-year averages of tree cover. To explore the

sensitivity in this regard, we re-estimated our model using annual tree cover data. We also

checked whether our results hold if we collapsed the data to two time periods: pre-PSNP

(2000-2004) and PSNP (2005-2019). The results reported in Panel B and C of Table A9
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show that the estimates are very similar to those reported in the main text (reproduced in

Panel A of Table A9) and statistically significant at least at the 10-% level.

b. Controlling for common shocks

We used alternative ways to control for common shocks. Instead of region-specific period

fixed effects, we explored sensitivity by using less data-intensive approaches, such as simple

linear time trend (=1 if first period; =2 if second period; and so on) and un-interacted period

fixed effects. The results reported in Panel B and C of Table A10 show that the magnitudes

of the estimates are similar to those reported in the main text (reproduced in Panel A of

Table A10) and statistically significant at least at the 10-% level.

c. Observed and unobserved district characteristics

Both our propensity score model and the IPTW regression model contain covariates that

are only defined at the pixel level. This may raise a concern that our model is not correctly

specified if district level characteristics – beyond pixel level characteristics – influence pro-

gram selection. Our estimation approach offers two ways to address this: adding district level

variables to the propensity score model or introducing district fixed effects to the regression

model. The ’doubly robust’ feature of the IPTW estimator means that our approach is valid

if either the PS model or the regression model is correctly specified (Sant’Anna and Zhao,

2020). To explore this, we sequentially adjusted both models to assess whether our impact

estimates are sensitive to the addition of additional district level controls. We first appended

our propensity score model with additional variables capturing district level means of popu-

lation density, slope and elevation. Re-estimating the model specified in the main text based

on these revised propensity scores yields similar coefficients to those reported in the main

text (Table A11). We then used the alternative way of controlling for time-invariant – and

unobserved – district characteristics by introducing district fixed effects to the regression

model. We implemented the fixed effects by appending the main model with binary vari-

ables for each district. This IPTW fixed effects estimator yields identical impact estimates

to those estimated by the main IPTW estimator (Table A12).
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We also verified that our findings were not driven by a particular district (e.g., due to its

size or because of unusually large changes in tree cover after the launch of the PSNP). To do

this, we reran our regression by omitting each district one at a time from the data set. The

results of this analysis are presented graphically in Fig. A13. In this figure, the blue line

represents the coefficient estimate when a given numbered district is dropped, the shaded

gray area represents the 95% confidence intervals. We ran this district exclusion exercise

across all pixels and over all rural pixels (restricted to <300 ppl/km2 or <150 ppl/km2).

As can be seen from the figure, our point estimates remain relatively stable through this

sensitivity test.

d. Controlling for spatial autocorrelation

The confidence intervals reported in the main text are calculated using clustered standard

errors. This may not be valid if the error terms exhibit significant spatial autocorrelation.

The standard approach to address this in the literature is to use Conley standard errors

that are robust to both spatial autocorrelation and heteroskedasticity (Conley, 1999). The

Conley approach is based on a weighting matrix that places more weight on observations

located closer to each other. These weights decay to zero after a user-specified distance cut-

off. Unfortunately, with more than 6 million pixels and 40 million observations, calculating

Conley-type standard errors is not computationally feasible. To demonstrate this, we used

the user-written Stata command acreg (Colella et al., 2019) that computes Conley standard

errors while permitting the use of probability weights. We then selected small random subsets

of pixels from our data and estimated the duration it takes for a standard laptop in 2021

(Quad core processor, 1.80GHz; 32GB RAM) to run the regressions. Table A13 shows the

results. First, we see that the processing time increases exponentially with the sample size.

Second, using just 1 % of all pixels (N=428,679; 61,254 pixels) took more than 11 hours.

We also tested this on a slightly larger subset of 5% of all pixels using a high-end computer

with more processing power (Quad core processor, 3.60GHz; 24GB RAM). The processing

time in this case was 15,465 minutes, or 10 days and more than 17 hours.
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Considering all this, computing Conley standard errors using the full set of data would

take several months. We therefore settled for using these random subsets of pixels to gauge

how the standard errors change when we use the Conley adjustment compared to when

clustered standard errors are used. Focusing on rural areas defined as population density

below 300 people/km2, we used four different distance cutoffs (50 km, 100 km, 200 km, and

500 km) to calculate the Conley adjusted standard errors. Table A14 shows the results.

As expected, the standard errors decrease as the size of the sample increases. Interestingly,

the standard errors seem to stabilize already when the subset covers at least as little as

0.25 % of all pixels. Focusing on the results based on 0.25 % or more pixels, we see that

the Conley adjusted standard errors are somewhat larger than the clustered standard errors

when 50 km or 100 km cutoffs are applied but similar in magnitude or smaller when the

cutoffs are larger. However, the Conley adjusted standard errors do not render the estimates

statistically insignificant even when 50 or 100 km cutoffs are applied.

e. VCF Data quality

The MODIS surface reflectance data used to estimate tree cover comes with quality

indicators indicating if a pixel in any of the 8 input data periods used to generate the annual

product is flagged as poor quality due to clouds, high aerosol levels, cloud shadows, or

having a view zenith angle higher than 45° (Townshend et al., 2017). It is recommended

that estimates of vegetation cover with two or more flags in a year may be erroneous and

should be used with caution (Townshend et al., 2017). To assess the sensitivity of our results

in this regard, we reran the analysis after discarding all pixels that were flagged twice or

more any year during our study period. Our findings are robust to restricting the data set to

pixels that never had such data quality concerns during the 2000-2019 study period (Table

A15).
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A.7 Carbon sequestration and Benefit-cost analysis

A.7.1 Carbon sequestration

We calculated the carbon sequestered resulting from increased tree cover from the pooled im-

pact of the program across all districts that participated in PSNP over the period 2005–2019

in our study area. We estimated that, controlling for rainfall, tree cover in PSNP districts

increased by 3.8% (95% CI: 0.0006; 0.0777) from 2000–2004 levels, relative to changes in

tree cover in non-PSNP districts during the same period. Looking at the PSNP districts,

we calculated from our VCF-TC data that their average tree cover in 2005 was 8.76%, and

hence the 3.8% increase in tree cover due to the PSNP corresponds to a predicted final tree

cover value of 9.10% (95% CI: 0.0864, 0.0944).

To convert these changes in tree cover to changes in carbon emissions, we used data on

average aboveground live woody biomass (AGBM) from the Global Forest Watch Data (Zarin

et al., 2016). This data was also used by (Ferraro and Simorangkir, 2020). The AGBM is

distributed in tiles and provides data on the metric tons of biomass per Ha at approximately

30m spatial resolution for the year 2000. To convert from tree cover to tons of biomass, we

analyzed the AGBM and VCF-TC data from 2000 and note that for pixels with 8.76% tree

cover in 2000, the average AGBM for those pixels is 30.8 metric tons of biomass per Ha. In

addition, the average AGBM for VCF-TC pixels with 9.10% tree cover is 31.9 metric tons

of biomass per Ha. Thus, we calculated that the average increase in biomass per VCF-TC

pixel due to the PSNP was 1.1 metric tons per Ha. Next, we converted these changes in

biomass to negative CO2 emissions. To begin, we multiplied the average AGBM by 0.5,

because biomass is composed of approximately 50% carbon (Penman et al., 2003). We next

multiplied the result by 3.67 to convert from tons of carbon to tons of CO2, based on the

relative molecular weights of carbon and CO2. Finally, we scaled up by the total area of all

the districts eligible for the PSNP (30.4 million Ha), to calculate that the program resulted

in 62.4 million metric tons of negative CO2 emissions (95% CI: 1.1 to 113.5; note that this
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and subsequent confidence intervals are non-symmetrical relative to the point estimate, due

to the nonlinear relationship between tree cover and AGBM).

Annualizing our estimates over the 15 years in our study period during the PSNP was

in effect, we estimated that the program-induced increases in tree cover lead to annual

negative CO2 emissions (4.16 million metric tons). Our estimate is larger, but on the same

magnitude, as the estimate of carbon negative emissions due to the PSNP found by (Woolf

et al., 2018) using different methods. We also note that our estimate is equivalent to 1.5%

of the reduction pledged by Ethiopia in the Paris Agreement (Federal Democratic Republic

of Ethiopia, 2021).3

A.7.2 Estimating cost

We estimated the annual administrative costs of the PSNP to be approximately 302 million

USD (2007 dollars) using data from Drechsler et al. (2017), which, in turn, draw on data from

the PSNP Interim Financial reports, annual reports, and World Bank analyses. Program

costs are given in current dollars. We deflated them to 2007 using the US CPI, because the

social cost of carbon is given in 2007 dollars, see below. Given our estimate that the program

induced 4.10 (95% CI: 0.058, 9.28) million metric tons of negative CO2 emissions annually,

we thus calculated that the per unit cost to reduce a ton of CO2 was USD 72.68 (95% CI:

39.98, 4,318).

A.7.3 Estimating benefits

To estimate the benefits due to negative carbon emissions, we used estimates of the social

cost of carbon from the Interagency Working Group (Interagency Working Group on Social

Cost of Greenhouse Gases, 2016). Specifically, we used the social cost of carbon from the

year 2015 (close to the midpoint of our treatment period) of 36 USD (2007 dollars) per metric
3Note that we benchmark our estimates against Ethiopia’s most recent 2021 reduction pledge (Federal

Democratic Republic of Ethiopia, 2021), whereas Woolf et al. (2018) benchmark against Ethiopia’s earlier
2016 reduction pledge UNFCCC (2016), so the percentages of the reductions met are not directly comparable.
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ton of CO2, which is the median estimate of the report, corresponding to a 3% discount rate.

Since we did not have data on how long the increased tree cover will persist, we calculated

benefits for four scenarios: assuming that trees are cut after fifteen years, 30 years, 50 years,

or never.

To calculate the value of reducing a million metric tonnes of CO2 emissions, we followed

Jayachandran et al. (2017) and Ferraro and Simorangkir (2020), and used the following

formula:

V alue = SCC ⇥ 1

(1 + r)S

✓
1� 1

(1 + r)D

◆
(2)

In this equation, SCC is the social cost of carbon and r is the effective discount rate,

calculated by combining the time discount rate (�) and the growth rate at which the SCC

rises over this time period (g), by the formula in r = (1 + �)/(1 + g) � 1. Following the

estimates from Interagency Working Group on Social Cost of Greenhouse Gases (2016),

we used the median time discount rate of 3%, and an average SCC growth rate of 2.2%,

resulting in an effective discount rate of 0.78%. S is the length of storage, which captures

the period between deforestation and carbon emission; we assume S to be equal to zero in

all our scenarios. Lastly D is the program-induced delay in carbon emissions, measured in

years.

We calculated the benefit-cost ratio for four different scenarios.

1. Scenario 1: D=Infinity; S=0. Under this scenario, we assumed that the increased tree

cover due to the PSNP remains permanently in place (D=infinity) and CO2 is released

as soon as the trees are cut (S=0). Using the formula above, we found that the benefit

per metric tonne of negative CO2 emissions = SSC= USD $36.

2. Scenario 2: D=50 years; S=0. Under this scenario, we assumed that the increased tree

cover from the PSNP remains in place for 50 years, at which time the trees are cut

down and all carbon is immediately released into the atmosphere. Using the formula

above, we found that the benefit per metric tonne of negative CO2 emissions = USD
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$11.62.

3. Scenario 3: D=30 years; S=0. Under this scenario, we assumed that the increased tree

cover from the PSNP remains in place for 30 years, at which time the trees are cut

down and all carbon is immediately released into the atmosphere. Using the formula

above, we found that the benefit per metric tonne of negative CO2 emissions = USD

$7.51.

4. Scenario 4: D=15 years; S=0. Under this scenario, we assumed that the increased tree

cover from the PSNP remains in place for 10 years, at which time the trees are cut

down and all carbon is immediately released into the atmosphere. Using the formula

above, we found that the benefit per metric tonne of negative CO2 emissions = USD

$3.97.

Benefit-cost ratio

Table 1 in the main text reports the benefit-cost ratios for the four different scenarios ana-

lyzed.
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Figure A1: The propensity scores for all pixels (N = 11,443,042 pixels; 49.5% from PSNP
districts). The area between the vertical red lines marks the area of common support.
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Figure A2: Spatial distribution of propensity scores.
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Figure A3: Propensity scores in the [0.1-0.9] interval. The common support includes N =
6,461,302 pixels (53.1% from PSNP districts).
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Figure A4: Distribution of average tree cover in 2002-2004 after restricting to the area of
common support. N = 6,461,302 pixels.
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Figure A5: Distribution of population density (people/km2) in 2005 after restricting to the
area of common support. The horizontal axis is truncated at 99 percentile of the population
density distribution. N = 6,396,660 pixels. The vertical dashed lines represent the population
density thresholds used the analyses; 150 people/km2 and 300 people/km2.
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Figure A6: Distribution of terrain slope after restricting to the area of common support. The
horizontal axis is truncated at 99 percentile of the terrain slope distribution. N = 6,394,787
pixels.
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Figure A7: Estimates measure % change in tree cover due to the PSNP. Area restricted
to pixels containing less than 300 people/km2. The unit of observation is a pixel observed
periodically. Impact estimates for terrain slope quintiles: 0-20 percentile (0.0 to 2.9 degrees;
N=9,924,180; 20-40 percentile (3.3 to 5.6 degrees; N=7,496,279); 40-60 percentile (5.8 to
10.7 degrees; N=8,217,594); 60-80 percentile (10.7 to 19.1 degrees; N=8,568,854); 80-100
percentile (19.1 to 78.4 degrees; N=8,771,077). Estimates are based on a difference in dif-
ferences method combined with an inverse probability weighting. Confidence intervals are
computed from standard errors clustered at the district level.
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Figure A8: Estimates measure % change in tree cover due to the PSNP. Area restricted
to pixels containing less than 150 people/km2. The unit of observation is a pixel observed
periodically. Impact estimates for terrain slope quintiles: 0-20 percentile (0.0 to 2.9 degrees;
N=8,366,596); 20-40 percentile (3.3 to 5.6 degrees; N=6,204,891); 40-60 percentile (5.8 to
10.7 degrees; N=6,670,860); 60-80 percentile (10.7 to 19.1 degrees; N=7,010,199); 80-100
percentile (19.1 to 78.4 degrees; N=7,449,533). Estimates are based on a difference in dif-
ferences method combined with an inverse probability weighting. Confidence intervals are
computed from standard errors clustered at the district level.

61



�����

����
���� ����

��
�

�
��

��
��

��
��

�
�F
KD
QJ
H�
LQ
�WU
HH
�F
RY
HU

)RUHVWV &URSODQGV *UDVVODQGV 6DYDQQDV

Figure A9: Estimates measure % change in tree cover due to the PSNP. Area restricted
to pixels containing less than 300 people/km2. The unit of observation is a pixel observed
periodically. Impact estimates for different land cover types at the onset of the program
in 2005: Forests and woody areas (N=1,847,615); Croplands (N=15,959,503); Grasslands
(N=17,587,542); Savannas (N=7,574,035). See Table A3 for exact aggregations. Estimates
are based on a difference in differences method combined with an inverse probability weight-
ing. Confidence intervals are computed from standard errors clustered at the district level.
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Figure A10: Estimates measure % change in tree cover due to the PSNP. Area restricted
to pixels containing less than 150 people/km2. The unit of observation is a pixel observed
periodically. Impact estimates for different land cover types at the onset of the program
in 2005: Forests and woody areas (N=1,621,046); Croplands (N=12,810,903); Grasslands
(N=14,987,602); Savannas (N=6,275,269). See Table A3 for exact aggregations. Estimates
are based on a difference in differences method combined with an inverse probability weight-
ing. Confidence intervals are computed from standard errors clustered at the district level.
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Figure A11: Estimates measure % change in tree cover due to the PSNP. Impacts are
estimated separately for low caseload intensity versus high caseload intensity pixels. A
pixel is defined as high caseload intensity if its average caseload per capita over our study
period is above the median. The unit of observation is a pixel observed periodically.
The figure displays separate panels for all pixels (N=45,229,114), pixels containing less
than 300 people/km2 (N=42,977,984), and pixels containing less than 150 people/km2

(N=35,702,079).
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Figure A12: Estimates measure % change in tree cover due to the PSNP. Impacts are
estimated separately for PSNP districts and non-PSNP districts adjacent to PSNP districts
(’Adjacent’, N=134 districts), against other, non-adjacent, non-PSNP districts. The unit of
observation is a pixel observed periodically. The figure displays separate panels for all pixels
(N=45,229,114), pixels containing less than 300 people/km2 (N=42,977,984), and pixels
containing less than 150 people/km2 (N=35,702,079).
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Figure A13: Estimates measure % change in tree cover due to the PSNP. The blue line
represents the estimated percent change in tree cover when a given numbered district is
dropped from the data set, and the shaded gray area represents the 95% confidence interval
for this estimate. We use the formula (exp(b) � 1) ⇤ 100 to convert from our regression
estimates to percent changes; as a result, confidence intervals are slightly asymmetrical. The
figure displays separate panels for all pixels, pixels containing less than 300 people/km2, and
pixels containing less than 150 people/km2.
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Table A3: Distribution of land cover types and their aggregation (pixels)

Our aggregation Land cover type (IGBP classification) N %
Forests and woody areas 877,054 7.7

Evergreen Needle leaf Forests 160 0.0
Evergreen Broad leaf Forests 420,845 3.7
Deciduous Broad leaf Forests 39,453 0.3
Mixed Forests 3,498 0.0
Closed Shrub lands 201,553 1.8
Open Shrub lands 71,040 0.6
Woody Savannas 140,505 1.2

Savannas 2,607,387 22.8
Savannas 2,607,387 22.8

Grasslands 4,991,436 43.6
Grasslands 4,991,436 43.6

Croplands 2,937,535 25.7
Croplands 2,894,468 25.3
Cropland/Natural Vegetation Mosaics 43,067 0.4

Not considered 29,630 0.3
Permanent Wetlands 2,501 0.0
Urban and Built-up Lands 9,532 0.1
Barren 17,370 0.2
Water Bodies 227 0.0
Total 11,443,042 100.0
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Table A4: Testing for pre-treatment trends

(1) (2) (3)
Estimation method: OLS District fixed effects Pixel fixed effects
Area: All pixels All pixels All pixels
PSNP*(2000-2001) period (�) -0.178*** -0.187*** -0.202***

(0.018) (0.018) (0.0002)
District fixed effects no yes no
Pixel fixed effects no no yes
Observations: 22,770,182 22,770,182 22,770,182
Clusters: 617 617 617

(4) (5) (6) (7)
Estimation method: OLS District fixed effects Pixel fixed effects IPTW
Area: Common support Common support Common support Common support
PSNP*(2000-2001) period (�) -0.080*** -0.081*** -0.078*** -0.019

(0.018) (0.02) (0.0002) (0.026)
District fixed effects no yes no no
Pixel fixed effects no no yes no
Observations: 12,920,507 12,920,507 12,920,507 12,920,507
Clusters: 513 513 513 513

Note: The unit of observation is a pixel observed in two time-periods: 2000–2001 and 2002–2004. The
outcome variable is the mean percent of tree cover in each period. The standard errors are reported in
parentheses and they are clustered at the district level in columns 1, 2, 4, 5, and 7 and at the pixel level in
columns 3 and 6. All models include a binary variable capturing pixels belonging to PSNP districts (except
the models based on fixed effects methods), region specific period fixed effects and mean annual rainfall
over the period. OLS = Ordinary Least Squares; IPTW = Inverse Probability Treatment Weighting.
Statistical significance denoted at *** p<0.01, ** p<0.05, * p<0.10.
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Table A5: Descriptive statistics of pre-program matching covariates

(1) (2) T-test
PSNP Non-PSNP Difference

Variable Mean/SE Mean/SE (1)-(2)

Mean rainfall (cm), 1995-2004 84.480
(2.042)

129.100
(2.125)

-44.620***

Standard deviation of rainfall (cm), 1995-2004 12.247
(0.284)

13.341
(0.236)

-1.094***

Population density (people km
2), 2005 88.545

(6.833)
105.825
(5.644)

-17.280*

Slope (degrees) 10.685
(0.486)

10.103
(0.237)

0.582

Elevation (meters) 1630.141
(47.368)

1751.708
(50.873)

-121.567*

Amhara region (0/1) 0.232
(0.032)

0.273
(0.036)

-0.040

Oromia region (0/1) 0.473
(0.048)

0.505
(0.038)

-0.032

SNNP region (0/1) 0.170
(0.031)

0.178
(0.030)

-0.009

Tigray region (0/1) 0.125
(0.025)

0.044
(0.026)

0.081**

N 5,663,428 5,779,614
Clusters 247 370

Note: Mean values followed by standard errors in parentheses. The value displayed for t-tests are the
differences in the means across the two groups. Standard errors (SE) are clustered at district level.
Statistical significance of the t-test (last column) denoted at *** p<0.01, ** p<0.05, * p<0.10. 0/1
refers to binary variable.
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Table A6: Propensity score regression results

(1)
Mean rainfall (cm), 1995-2004 -0.201⇤⇤⇤

(0.0003)
— squared term 0.0005⇤⇤⇤

(0.000001)
Standard deviation of rainfall (cm), 1995-2004 0.350⇤⇤⇤

(0.002)
— squared term -0.005⇤⇤⇤

(0.00007)
Population density (people per km2) 0.0003⇤⇤⇤

(0.000005)
Slope (degrees) 0.032⇤⇤⇤

(0.00009)
Elevation (meters) 0.0009⇤⇤⇤

(0.000002)
Amhara region (0/1) -0.864⇤⇤⇤

(0.004)
Oromia region (0/1) -1.958⇤⇤⇤

(0.004)
SNNP region (0/1) 0.251⇤⇤⇤

(0.004)
Constant 10.71⇤⇤⇤

(0.014)
Observations 11,443,042
Clusters: 617

Note: Unit of observation is pixel. Coefficients are log-odds units.
Standard errors are reported in parentheses. Statistical significance
denoted at *** p<0.01, ** p<0.05, * p<0.10. 0/1 refers to binary
variable.
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Table A7: Covariate balance after restricting the area to common support and applying
inverse probability treatment weights

(1) (2) T-test
PSNP Non-PSNP Difference

Variable Mean/SE Mean/SE (1)-(2)

Mean rainfall (cm), 1995-2004 105.121
(2.209)

104.771
(2.161)

0.350

Standard deviation of rainfall (cm), 1995-2004 12.623
(0.296)

12.614
(0.314)

0.009

Population density (people per km2) 125.328
(8.655)

116.236
(10.366)

9.092

Slope (degrees) 11.109
(0.454)

11.185
(0.479)

-0.076

Elevation (meters) 1775.538
(47.546)

1792.522
(87.601)

-16.984

Amhara region (0/1) 0.281
(0.038)

0.300
(0.046)

-0.018

Oromia region (0/1) 0.374
(0.045)

0.390
(0.056)

-0.016

SNNP region (0/1) 0.270
(0.044)

0.237
(0.049)

0.032

Tigray region (0/1) 0.075
(0.035)

0.073
(0.053)

0.003

N 3,428,265 3,033,037
Clusters 227 286
Note: Mean values followed by standard errors in parentheses. The value displayed for t-tests
are the differences in the means across the two groups. Standard errors (SE) are clustered at
district level. Observations are weighted using inverse probability treatment weights. Statistical
significance of the t-test (last column) denoted at *** p<0.01, ** p<0.05, * p<0.10. 0/1 refers
to binary variable.
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Table A8: Sensitivity analyses: Alternative outcome variables

(1) (2) (3)
Area: All <300 ppl/km2

<150 ppl/km2

Panel A: Logged tree cover as outcome variable (Figure 2, Panel A)
PSNP district X period: 2005-2019 0.038** 0.043** 0.058***

(0.019) (0.019) (0.022)
Region X period fixed effects? yes yes yes
Observations 45,219,651 42,968,863 35,694,111
Clusters 513 500 452
R2 0.204 0.207 0.231

Panel B: Inverse hyperbolic sine transformed tree cover as outcome variable
PSNP district X period: 2005-2019 0.036* 0.042** 0.057**

(0.019) (0.019) (0.022)
Region X year fixed effects? yes yes yes
Observations 45,229,114 42,977,984 35,702,079
Clusters 513 500 452
R2 0.204 0.207 0.231

Panel C: Raw (non-logged) tree cover as outcome variable
PSNP district X period: 2005-2019 0.497* 0.560* 0.675*

(0.294) (0.300) (0.350)
Region X period fixed effects? yes yes yes
Observations 45,229,114 42,977,984 35,702,079
Clusters 513 500 452
R2 0.163 0.165 0.183
Mean tree cover non-PSNP (2000-2004) 14.70 14.60 14.96

Note: The unit of observation is a pixel observed periodically. The outcome variable is mean
percent of tree cover in the period. In Panel A, the outcome variable is logged. In Panel B, the
outcome variable is inverse hyperbolic sine transformed. In Panel C, non-transformed tree cover
is used. The standard errors are reported in parentheses and they are clustered at the district
level. All models include a binary variable capturing pixels belonging to PSNP districts, region
specific period fixed effects and mean annual rainfall over the period. *** p<0.01, ** p<0.05, *
p<0.10.
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Table A9: Sensitivity analyses: Data structure

(1) (2) (3)
Area: All <300 ppl/km2

<150 ppl/km2

Panel A: Periodic data (Figure 2, Panel A)
PSNP district X period: 2005-2019 0.038** 0.043** 0.058***

(0.019) (0.019) (0.022)
Region X period fixed effects? yes yes yes
Observations 45,219,651 42,968,863 35,694,111
Clusters 513 500 452
R2 0.204 0.207 0.231

Panel B: Annual data
PSNP district X period: 2005-2019 0.040* 0.044* 0.059**

(0.022) (0.023) (0.027)
Region X year fixed effects? yes yes yes
Observations 129,130,790 122,701,616 101,923,551
Clusters 513 500 452
R2 0.183 0.187 0.209

Panel C: Two periods model
PSNP district X period: 2005-2019 0.035* 0.039* 0.053**

(0.021) (0.021) (0.025)
Region X period fixed effects? yes yes yes
Observations 12,922,264 12,279,089 10,200,361
Clusters 513 500 452
R2 0.208 0.211 0.235

Note: The unit of observation is a pixel observed periodically or annually. The outcome
variable is the (log) mean percent of tree cover in each period or year. The standard errors
are reported in parentheses and they are clustered at the district level. All models include a
binary variable capturing pixels belonging to PSNP districts, region specific period or year
fixed effects and mean annual rainfall over the period or mean annual rainfall. Panel (A):
Estimates reported the main text; see Panel A of Figure 2. Panel B: Annual data used
instead of periodic data. Panel C: Data collapsed to two periods: pre-PSNP (2000-2004)
and PSNP (2005-2019). *** p<0.01, ** p<0.05, * p<0.10.
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Table A10: Sensitivity analyses: Time trends

(1) (2) (3)
Area: All <300 ppl/km2

<150 ppl/km2

Panel A: Region X period fixed effects (Figure 2, Panel A)
PSNP district X period: 2005-2019 0.038** 0.043** 0.058***

(0.019) (0.019) (0.022)
Region X period fixed effects? yes yes yes
Observations 45,219,651 42,968,863 35,694,111
Clusters 513 500 452
R2 0.204 0.207 0.231

Panel B: Simple time trend
PSNP district X period: 2005-2019 0.035* 0.043** 0.064**

(0.020) (0.021) (0.024)
Time trend? yes yes yes
Observations 45,219,651 42,968,863 35,694,111
Clusters 513 500 452
R2 0.140 0.139 0.146

Panel C: Period fixed effects
PSNP district X period: 2005-2019 0.035* 0.043** 0.064***

(0.020) (0.021) (0.024)
Period fixed effects? yes yes yes
Observations 45,219,651 42,968,863 35,694,111
Clusters 513 500 452
R2 0.141 0.140 0.147

Note: The unit of observation is a pixel observed periodically. The outcome variable is
mean percent of tree cover in each period. In Panel A, region specific period fixed effects are
used. In Panel B, these are replaced by simple time trend (=1 if first period; =2 if second
period; and so on). In Panel B, these are replaced by period fixed effects. The standard
errors are reported in parentheses and they are clustered at the district level. All models
include a binary variable capturing pixels belonging to PSNP districts, region specific period
fixed effects and mean annual rainfall over the period. In panel C, a binary variable obtaining
a value 1 if the period is after the launch of PSNP (i.e., in 2005-2019), and zero if before
(i.e., in 2000-2004). *** p<0.01, ** p<0.05, * p<0.10.
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Table A11: Sensitivity analyses: Adding district level variables to the propensity score model
and re-estimating the IPTW regression model

(1) (2) (3)
Area: All <300 ppl/km2

<150 ppl/km2

Panel A: IPTW model (Figure 2, Panel A)
PSNP district X period: 2005-2019 0.038** 0.043** 0.058***

(0.019) (0.019) (0.022)
Observations 45,219,651 42,968,863 35,694,111
R2 0.204 0.207 0.231

Panel B: Propensity scores estimated using additional district level variables
PSNP woreda X period: 2005-2019 0.053⇤ 0.061⇤⇤ 0.074⇤⇤

(0.029) (0.030) (0.034)
Observations 34,563,115 32,597,164 27,351,429
R

2 0.206 0.210 0.227
Note: The unit of observation is a pixel observed periodically. The outcome variable is
mean percent of tree cover in each period. In Panel A, equation reported in the main text
is estimated. In Panel B, the inverse probability treatment weights are based on propensity
scores estimated using additional district level variables. The standard errors are reported
in parentheses and they are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A12: Sensitivity analyses: Adding district fixed effects to the IPTW regression model

(1) (2) (3)
Area: All <300 ppl/km2

<150 ppl/km2

Panel A: IPTW model (Figure 2, Panel A)
PSNP district X period: 2005-2019 0.038** 0.043** 0.058***

(0.019) (0.019) (0.022)
District fixed effects? no no no
Observations 45,219,651 42,968,863 35,694,111
R2 0.204 0.207 0.231

Panel B: IPTW model appended with District Fixed Effects
PSNP district X period: 2005-2019 0.038⇤⇤ 0.043⇤⇤ 0.058⇤⇤

(0.019) (0.019) (0.023)
District fixed effects? yes yes yes
Observations 45,219,651 42,968,863 35,694,111
R2 0.469 0.459 0.461

Note: The unit of observation is a pixel observed periodically. The outcome variable is
mean percent of tree cover in each period. In Panel A, equation reported in the main text is
estimated. In Panel B, the equation is appended with District Fixed Effects. The standard
errors are reported in parentheses and they are clustered at the district level. Model used
in Panel A includes a binary variable capturing pixels belonging to PSNP districts, region
specific period fixed effects and mean annual rainfall over the period. Model used in Panel B
includes region specific period fixed effects, mean annual rainfall over the period and binary
variable capturing each district. *** p<0.01, ** p<0.05, * p<0.10.

Table A13: Computer processing time when calculating Conley standard errors, by different
random samples of pixels

(1) (2) (3) (4) (5) (6) (7)
% of N number of hours minutes seconds total time in
pixels pixels minutes
0.05 21,613 3,088 1 27 1.5
0.1 42,864 6,124 7 27 7.5
0.25 106,372 15,199 35 46 35.8
0.5 213,050 30,441 3 13 47 194
1 428,679 61,254 11 27 39 688

Note: This table shows the estimated processing times when we estimated re-
gressions based on Conley standard error adjustments (Conley, 1999) using the
user-written acreg command in Stata with small random samples of all pixels in
our data set. The parent data set is defined as all pixels in the common support
with population density <300 people per km2. The first column shows the % of
pixels selected, the second is the number of pixel-time period observations, and the
third is the number of pixels in the given sample. The remaining columns indicate
the time it took for a standard laptop to estimate the regression.
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Table A14: Estimated Conley standard errors, by different random subset of (<300 ppl/km2)
pixels

(1) (2) (3) (4)
Method: coeff std err t p

Panel A: 100% of the pixels; N = 42,968,863 (6,139,629 pixels)
Clustered standard errors 0.043 0.019 2.23 0.026

Panel B: 0.05% of the pixels; N = 21,613 (3,088 pixels)
Clustered standard errors 0.048 0.024 2.03 0.043
Conley, with distance cutoff at 50km 0.048 0.028 1.69 0.092
Conley, with distance cutoff at 100km 0.048 0.031 1.52 0.128
Conley, with distance cutoff at 200km 0.048 0.030 1.62 0.106
Conley, with distance cutoff at 500km 0.048 0.020 2.36 0.018

Panel C: 0.10% of the pixels; N = 42,864 (6,124 pixels)
Clustered standard errors 0.047 0.020 2.38 0.018
Conley, with distance cutoff at 50km 0.047 0.024 1.92 0.055
Conley, with distance cutoff at 100km 0.047 0.025 1.86 0.063
Conley, with distance cutoff at 200km 0.047 0.022 2.11 0.035
Conley, with distance cutoff at 500km 0.047 0.018 2.60 0.009

Panel D: 0.25% of the pixels; N = 106,372 (15,199 pixels)
Clustered standard errors 0.044 0.019 2.34 0.020
Conley, with distance cutoff at 50km 0.044 0.022 2.00 0.046
Conley, with distance cutoff at 100km 0.044 0.022 2.00 0.045
Conley, with distance cutoff at 200km 0.044 0.015 2.94 0.003
Conley, with distance cutoff at 500km 0.044 0.014 3.22 0.001

Panel E: 0.5% of the pixels; N = 213,050 (30,441 pixels)
Clustered standard errors 0.046 0.019 2.39 0.017
Conley, with distance cutoff at 50km 0.046 0.023 2.04 0.041
Conley, with distance cutoff at 100km 0.046 0.023 1.99 0.047
Conley, with distance cutoff at 200km 0.046 0.018 2.57 0.010
Conley, with distance cutoff at 500km 0.046 0.019 2.39 0.017

Panel F: 1% of the pixels; N = 428,679 (61,254 pixels)
Clustered standard errors 0.047 0.019 2.52 0.012
Conley, with distance cutoff at 50km 0.047 0.022 2.10 0.035
Conley, with distance cutoff at 100km 0.047 0.023 2.01 0.045
Conley, with distance cutoff at 200km 0.047 0.019 2.47 0.013
Conley, with distance cutoff at 500km 0.047 0.010 4.68 0.000

Note: Panel A shows estimates based on <300 ppl/km2 pixels as described in the
main text. The subsequent panels use random subsets of pixels as labeled. The
first row in each panel (‘Clustered standard errors’) shows the impact estimates
(‘coeff’), standard errors (‘std err’), t-value (t) and p-value (p). The remaining
rows in Panels B to F show the impact estimates, standard errors, t-values and
p-values when Conley standard errors are computed with different distance cutoffs.
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Table A15: Sensitivity analyses: Restricting the data to pixels with no quality flags

(1) (2) (3)
Area: All <300 ppl/km2

<150 ppl/km2

Panel A: IPTW model (Figure 2, Panel A)
PSNP district X period: 2005-2019 0.038** 0.043** 0.058***

(0.019) (0.019) (0.022)
Observations 45,219,651 42,968,863 35,694,111
R2 0.204 0.207 0.231

Panel B: Data restricted to pixels without data quality flags
PSNP woreda X period: 2005-2019 0.027⇤ 0.029⇤ 0.045⇤⇤⇤

(0.015) (0.015) (0.017)
Observations 26,375,040 25,779,547 22,110,539
R

2 0.242 0.245 0.261
Note: The unit of observation is a pixel observed periodically. The outcome variable is
mean percent of tree cover in each period. In Panel A, equation reported in the main text
is estimated. In Panel B, the same equation is re-estimated after omitting all pixels with
quality flags. The standard errors are reported in parentheses and they are clustered at
the district level. Models used in both panels include a binary variable capturing pixels
belonging to PSNP districts, region specific period fixed effects and mean annual rainfall
over the period. *** p<0.01, ** p<0.05, * p<0.10.
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